Coupling of eigenvalues of complex matrices at diabolic and exceptional points

被引:121
作者
Seyranian, AP [1 ]
Kirillov, ON [1 ]
Mailybaev, AA [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Inst Mech, Moscow 119192, Russia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 08期
关键词
D O I
10.1088/0305-4470/38/8/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper presents a general theory of coupling of eigenvalues of complex matrices of an arbitrary dimension depending on real parameters. The cases of weak and strong coupling are distinguished and their geometric interpretation in two and three-dimensional spaces is given. General asymptotic formulae for eigenvalue surfaces near diabolic and exceptional points are presented demonstrating crossing and avoided crossing scenarios. Two physical examples illustrate effectiveness and accuracy of the presented theory.
引用
收藏
页码:1723 / 1740
页数:18
相关论文
共 36 条
[1]  
Arnold V. I., 1989, Funktsional. Anal. iPrilozhen, V23, P1
[2]  
Berry BJL, 1999, URBAN GEOGR, V20, P1
[3]   The optical singularities of birefringent dichroic chiral crystals [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2033) :1261-1292
[4]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[5]  
Courant CRR., 1953, METHODS MATH PHYS
[6]   Observation of a chiral state in a microwave cavity -: art. no. 034101 [J].
Dembowski, C ;
Dietz, B ;
Gräf, HD ;
Harney, HL ;
Heine, A ;
Heiss, WD ;
Richter, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (03) :4
[7]   Experimental observation of the topological structure of exceptional points [J].
Dembowski, C ;
Gräf, HD ;
Harney, HL ;
Heine, A ;
Heiss, WD ;
Rehfeld, H ;
Richter, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :787-790
[8]   Is strong modal resonance a precursor to power system oscillations? [J].
Dobson, I ;
Zhang, JF ;
Greene, S ;
Engdahl, H ;
Sauer, PW .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (03) :340-349
[9]  
Hamilton W.R., 1833, Dublin University Review and Quarterly Magazine, V1, P795
[10]   Exceptional points of non-Hermitian operators [J].
Heiss, WD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06) :2455-2464