REGULARITY OF GLOBAL ATTRACTORS AND EXPONENTIAL ATTRACTORS FOR 2D QUASI-GEOSTROPHIC EQUATIONS WITH FRACTIONAL DISSIPATION

被引:2
作者
Yang, Lin [1 ]
Wang, Yejuan [1 ]
Caraballo, Tomas [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Fac Matemat, C Tarfia S-N, Seville 41012, Spain
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 03期
基金
中国国家自然科学基金;
关键词
Global attractor; fractional dissipation; quasi-geostrophic equations; asymptotic compactness; exponential attractor; LONG-TIME DYNAMICS; MAXIMUM PRINCIPLE; WEAK SOLUTIONS; BEHAVIOR; DECAY; LIMIT;
D O I
10.3934/dcdsb.2021093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the regularity of global attractors and of exponential attractors for two dimensional quasi-geostrophic equations with fractional dissipation in H2 alpha+s(T-2) with alpha > 1/2 and s > 1. We prove the existence of (H2 alpha-+s(T-2), H2 alpha+s(T-2))-global attractor A, that is, A is compact in H2 alpha+s(T-2) and attracts all bounded subsets of H2 alpha-+s(T-2) with respect to the norm of H2 alpha+s(T-2). The asymptotic compactness of solutions in H2 alpha+s(T-2) is established by using commutator estimates for nonlinear terms, the spectral decomposition of solutions and new estimates of higher order derivatives. Furthermore, we show the existence of the exponential attractor in H2 alpha+s(T-2), whose compactness, boundedness of the fractional dimension and exponential attractiveness for the bounded subset of H2 alpha-+s(T-2) are all in the topology of H2 alpha+s(T-2).
引用
收藏
页码:1345 / 1377
页数:33
相关论文
共 40 条
  • [1] Adams R.A., 1975, SOBOLEV SPACES, V65
  • [2] Babin A. V., 1992, ATTRACTORS EVOLUTION, V25
  • [3] Berselli LC, 2002, INDIANA U MATH J, V51, P905, DOI 10.1512/iumj.2002.51.2075
  • [4] Parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations
    Berti, Valeria
    Gatti, Stefania
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2006, 64 (04) : 617 - 639
  • [5] Cholewa J. W., 2003, BANACH CTR PUBL, V60, P13, DOI DOI 10.4064/bc60-0-1
  • [6] Cholewa J. W., 2000, GLOBAL ATTRACTORS AB, V278
  • [7] Constantin P., 1988, NAVIER STOKES EQUATI
  • [8] Uniformly attracting limit sets for the critically dissipative SQG equation
    Constantin, Peter
    Zelati, Michele Coti
    Vicol, Vlad
    [J]. NONLINEARITY, 2016, 29 (02) : 298 - 318
  • [9] Long Time Dynamics of Forced Critical SQG
    Constantin, Peter
    Tarfulea, Andrei
    Vicol, Vlad
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 335 (01) : 93 - 141
  • [10] A maximum principle applied to quasi-geostrophic equations
    Córdoba, A
    Córdoba, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) : 511 - 528