The complexity of Minimum Ratio Spanning Tree problems

被引:7
作者
Skiscim, CC
Palocsay, SW
机构
[1] Lion Technol Inc, Comus, MD 20842 USA
[2] James Madison Univ, Informat Technol & Management Sci Program, Harrisonburg, VA 22087 USA
关键词
combinatorial optimization; fractional programming; NP-hard;
D O I
10.1007/s10898-004-5119-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine the complexity of two minimum spanning tree problems with rational objective functions. We show that the Minimum Ratio Spanning Tree problem is NP-hard when the denominator is unrestricted in sign, thereby sharpening a previous complexity result. We then consider an extension of this problem where the objective function is the sum of two linear ratios whose numerators and denominators are strictly positive. This problem is shown to be NP-hard as well. We conclude with some results characterizing sufficient conditions for a globally optimal solution.
引用
收藏
页码:335 / 346
页数:12
相关论文
共 7 条
  • [1] ALMOGY Y, 1971, OPERATIONS RES
  • [2] CHANDRASEKARAN R, 1977, NETWORKS, V7, P355
  • [3] Dinkelbach Werner., 1967, Manage. Sci., V13, P492, DOI [10.1287/mnsc.13.7.492, DOI 10.1287/MNSC.13.7.492]
  • [4] FALK JE, 1992, RECENT ADV GLOBAL OP, P221
  • [5] FALK JH, COMMUNICATION
  • [6] HYPERBOLIC 0-1 PROGRAMMING AND QUERY OPTIMIZATION IN INFORMATION-RETRIEVAL
    HANSEN, P
    DEARAGAO, MVP
    RIBEIRO, CC
    [J]. MATHEMATICAL PROGRAMMING, 1991, 52 (02) : 255 - 263
  • [7] Minimum spanning trees with sums of ratios
    Skiscim, CC
    Palocsay, SW
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (02) : 103 - 120