SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

被引:9
|
作者
Hong, Chan Yong [1 ,2 ]
Kim, Nam Kyun [3 ]
Lee, Yang [4 ]
机构
[1] Kyung Hee Univ, Dept Math, Seoul 131701, South Korea
[2] Kyung Hee Univ, Res Inst Basic Sci, Seoul 131701, South Korea
[3] Hanbat Natl Univ, Coll Liberal Arts, Taejon 305719, South Korea
[4] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
关键词
semiprime ring; quasi-Armendariz ring; skew polynomial ring; ARMENDARIZ RINGS; REDUCED RINGS; EXTENSIONS;
D O I
10.4134/JKMS.2010.47.5.879
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if a(i)Rb(j) = 0 for each i, j whenever polynomials f(x) = Sigma(m)(i=0) a(i)x(i), g(x) = Sigma(n)(j=0) b(j)x(j) is an element of R[x] satisfy f(x)R[x]g(x) = 0. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism sigma, then f(x)R[x; sigma]g(x) = 0 implies a(i)R sigma(i+k) (b(j)) = 0 for any integer k >= 0 and i, j, where f(x) = Sigma(m)(i=0)a(i)x(i), g(x) = Sigma(n)(j=0)b(j)x(j) is an element of R[x; sigma]. Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define sigma-skew quasi-Armendariz rings for an endomorphism sigma of a ring R. Then we study several extensions of sigma-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and sigma-skew Armendariz rings.
引用
收藏
页码:879 / 897
页数:19
相关论文
共 50 条
  • [41] ON COEFFICIENTS OF NILPOTENT POLYNOMIALS IN SKEW POLYNOMIAL RINGS
    Nam, Sang Bok
    Ryu, Sung Ju
    Yun, Sang Jo
    KOREAN JOURNAL OF MATHEMATICS, 2013, 21 (04): : 421 - 428
  • [42] Ad-Nilpotent Elements of Skew Index in Semiprime Rings with Involution
    Jose Brox
    Esther García
    Miguel Gómez Lozano
    Rubén Muñoz Alcázar
    Guillermo Vera de Salas
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 631 - 646
  • [43] Prime and Semiprime Rings with n-Commuting Generalized Skew Derivations
    De Filippis, Vincenzo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 1 - 17
  • [45] Ad-Nilpotent Elements of Skew Index in Semiprime Rings with Involution
    Brox, Jose
    Garcia, Esther
    Gomez Lozano, Miguel
    Munoz Alcazar, Ruben
    Vera de Salas, Guillermo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (02) : 631 - 646
  • [46] Prime and Semiprime Rings with n-Commuting Generalized Skew Derivations
    Vincenzo De Filippis
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 1 - 17
  • [47] On Derivations in Semiprime Rings
    Shakir Ali
    Huang Shuliang
    Algebras and Representation Theory, 2012, 15 : 1023 - 1033
  • [48] On Derivations in Semiprime Rings
    Ali, Shakir
    Huang Shuliang
    ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (06) : 1023 - 1033
  • [49] On τ-centralizers of semiprime rings
    E. Albaş
    Siberian Mathematical Journal, 2007, 48 : 191 - 196
  • [50] On Skew Triangular Matrix Rings
    Habibi, M.
    Moussavi, A.
    Alhevaz, A.
    ALGEBRA COLLOQUIUM, 2015, 22 (02) : 271 - 280