机构:
Kyung Hee Univ, Dept Math, Seoul 131701, South Korea
Kyung Hee Univ, Res Inst Basic Sci, Seoul 131701, South KoreaKyung Hee Univ, Dept Math, Seoul 131701, South Korea
Hong, Chan Yong
[1
,2
]
Kim, Nam Kyun
论文数: 0引用数: 0
h-index: 0
机构:
Hanbat Natl Univ, Coll Liberal Arts, Taejon 305719, South KoreaKyung Hee Univ, Dept Math, Seoul 131701, South Korea
Kim, Nam Kyun
[3
]
Lee, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Dept Math Educ, Pusan 609735, South KoreaKyung Hee Univ, Dept Math, Seoul 131701, South Korea
Lee, Yang
[4
]
机构:
[1] Kyung Hee Univ, Dept Math, Seoul 131701, South Korea
[2] Kyung Hee Univ, Res Inst Basic Sci, Seoul 131701, South Korea
[3] Hanbat Natl Univ, Coll Liberal Arts, Taejon 305719, South Korea
[4] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if a(i)Rb(j) = 0 for each i, j whenever polynomials f(x) = Sigma(m)(i=0) a(i)x(i), g(x) = Sigma(n)(j=0) b(j)x(j) is an element of R[x] satisfy f(x)R[x]g(x) = 0. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism sigma, then f(x)R[x; sigma]g(x) = 0 implies a(i)R sigma(i+k) (b(j)) = 0 for any integer k >= 0 and i, j, where f(x) = Sigma(m)(i=0)a(i)x(i), g(x) = Sigma(n)(j=0)b(j)x(j) is an element of R[x; sigma]. Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define sigma-skew quasi-Armendariz rings for an endomorphism sigma of a ring R. Then we study several extensions of sigma-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and sigma-skew Armendariz rings.
机构:
Kyung Hee Univ, Dept Math, Seoul 131701, South Korea
Kyung Hee Univ, Res Inst Basic Sci, Seoul 131701, South KoreaHanbat Natl Univ, Coll Liberal Arts & Sci, Taejon 305719, South Korea
Hong, Chan Yong
Kim, Nam Kyun
论文数: 0引用数: 0
h-index: 0
机构:
Hanbat Natl Univ, Coll Liberal Arts & Sci, Taejon 305719, South KoreaHanbat Natl Univ, Coll Liberal Arts & Sci, Taejon 305719, South Korea
Kim, Nam Kyun
Lee, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Dept Math Educ, Pusan 609735, South KoreaHanbat Natl Univ, Coll Liberal Arts & Sci, Taejon 305719, South Korea