Bayesian multiple logistic regression for case-control GWAS

被引:17
作者
Banerjee, Saikat [1 ]
Zeng, Lingyao [2 ]
Schunkert, Heribert [2 ]
Soeding, Johannes [1 ]
机构
[1] Max Planck Inst Biophys Chem, Gottingen, Germany
[2] German Heart Ctr, Munich, Germany
来源
PLOS GENETICS | 2018年 / 14卷 / 12期
关键词
GENOME-WIDE ASSOCIATION; CORONARY-ARTERY-DISEASE; MAPPING CAUSAL VARIANTS; MIXED-MODEL; LOCI; STATISTICS; IMPUTATION; FRAMEWORK; BIOLOGY;
D O I
10.1371/journal.pgen.1007856
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities >= 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore.
引用
收藏
页数:27
相关论文
共 44 条
[1]   Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies [J].
Benner, Christian ;
Havulinna, Aki S. ;
Jarvelin, Marjo-Riitta ;
Salomaa, Veikko ;
Ripatti, Samuli ;
Pirinen, Matti .
AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (04) :539-551
[2]   FINEMAP: efficient variable selection using summary data from genome-wide association studies [J].
Benner, Christian ;
Spencer, Chris C. A. ;
Havulinna, Aki S. ;
Salomaa, Veikko ;
Ripatti, Samuli ;
Pirinen, Matti .
BIOINFORMATICS, 2016, 32 (10) :1493-1501
[3]  
Bishop Christopher M, 2016, Pattern recognition and machine learning
[4]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[5]   Large-scale association analysis identifies new risk loci for coronary artery disease [J].
Deloukas, Panos ;
Kanoni, Stavroula ;
Willenborg, Christina ;
Farrall, Martin ;
Assimes, Themistocles L. ;
Thompson, John R. ;
Ingelsson, Erik ;
Saleheen, Danish ;
Erdmann, Jeanette ;
Goldstein, Benjamin A. ;
Stirrups, Kathleen ;
Koenig, Inke R. ;
Cazier, Jean-Baptiste ;
Johansson, Asa ;
Hall, Alistair S. ;
Lee, Jong-Young ;
Willer, Cristen J. ;
Chambers, John C. ;
Esko, Tonu ;
Folkersen, Lasse ;
Goel, Anuj ;
Grundberg, Elin ;
Havulinna, Aki S. ;
Ho, Weang K. ;
Hopewell, Jemma C. ;
Eriksson, Niclas ;
Kleber, Marcus E. ;
Kristiansson, Kati ;
Lundmark, Per ;
Lyytikainen, Leo-Pekka ;
Rafelt, Suzanne ;
Shungin, Dmitry ;
Strawbridge, Rona J. ;
Thorleifsson, Gudmar ;
Tikkanen, Emmi ;
Van Zuydam, Natalie ;
Voight, Benjamin F. ;
Waite, Lindsay L. ;
Zhang, Weihua ;
Ziegler, Andreas ;
Absher, Devin ;
Altshuler, David ;
Balmforth, Anthony J. ;
Barroso, Ines ;
Braund, Peter S. ;
Burgdorf, Christof ;
Claudi-Boehm, Simone ;
Cox, David ;
Dimitriou, Maria ;
Do, Ron .
NATURE GENETICS, 2013, 45 (01) :25-U52
[6]   Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics [J].
Chen, Wenan ;
McDonnell, Shannon K. ;
Thibodeau, Stephen N. ;
Tillmans, Lori S. ;
Schaid, Daniel J. .
GENETICS, 2016, 204 (03) :933-+
[7]   Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics [J].
Chen, Wenan ;
Larrabee, Beth R. ;
Ovsyannikova, Inna G. ;
Kennedy, Richard B. ;
Haralambieva, Iana H. ;
Poland, Gregory A. ;
Schaid, Daniel J. .
GENETICS, 2015, 200 (03) :719-+
[8]   Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes [J].
Cook, James P. ;
Mahajan, Anubha ;
Morris, Andrew P. .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2017, 25 (02) :240-245
[9]   Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals [J].
Dastani, Zari ;
Hivert, Marie-France ;
Timpson, Nicholas ;
Perry, John R. B. ;
Yuan, Xin ;
Scott, Robert A. ;
Henneman, Peter ;
Heid, Iris M. ;
Kizer, Jorge R. ;
Lyytikainen, Leo-Pekka ;
Fuchsberger, Christian ;
Tanaka, Toshiko ;
Morris, Andrew P. ;
Small, Kerrin ;
Isaacs, Aaron ;
Beekman, Marian ;
Coassin, Stefan ;
Lohman, Kurt ;
Qi, Lu ;
Kanoni, Stavroula ;
Pankow, James S. ;
Uh, Hae-Won ;
Wu, Ying ;
Bidulescu, Aurelian ;
Rasmussen-Torvik, Laura J. ;
Greenwood, Celia M. T. ;
Ladouceur, Martin ;
Grimsby, Jonna ;
Manning, Alisa K. ;
Liu, Ching-Ti ;
Kooner, Jaspal ;
Mooser, Vincent E. ;
Vollenweider, Peter ;
Kapur, Karen A. ;
Chambers, John ;
Wareham, Nicholas J. ;
Langenberg, Claudia ;
Frants, Rune ;
Willems-vanDijk, Ko ;
Oostra, Ben A. ;
Willems, Sara M. ;
Lamina, Claudia ;
Winkler, Thomas W. ;
Psaty, Bruce M. ;
Tracy, Russell P. ;
Brody, Jennifer ;
Chen, Ida ;
Viikari, Jorma ;
Kahonen, Mika ;
Pramstaller, Peter P. .
PLOS GENETICS, 2012, 8 (03)
[10]  
Eraslan G, 2016, DEEPWAS DIRECTLY INT