Millisecond methane steam reforming via process and catalyst intensification

被引:50
|
作者
Stefanidis, Georgios D.
Vlachos, Dionisios G. [1 ]
机构
[1] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
关键词
catalytic combustion; hydrogen; methane; microreactors; process intensification; Pt; Rh; steam reforming; syngas;
D O I
10.1002/ceat.200800237
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The steam reforming of methane on a rhodium/alumina based multifunctional microreactor is simulated using fundamental chemical kinetics in a pseudo-two-dimensional microreactor model. The microreactor consists of parallel catalytic plates, whereby catalytic combustion and reforming take place oil opposite sides of a wall. Heat exchange happens through the wall. It is shown that reforming can happen in millisecond or lower contact times and proper balancing of flow, rates can give high conversions, reasonably high temperatures, and high yield to syngas. It is found that tuning catalyst surface area and internal and external mass and heat transfer through reactor sizing can lead to further process intensification.
引用
收藏
页码:1201 / 1209
页数:9
相关论文
共 50 条
  • [1] Intensification of steam reforming of natural gas: Choosing combustible fuel and reforming catalyst
    Stefanidis, Georgios D.
    Vlachos, Dionisios G.
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (01) : 398 - 404
  • [2] Methane Steam Reforming at Microscales: Operation Strategies for Variable Power Output at Millisecond Contact Times
    Stefanidis, Georgios D.
    Vlachos, Dionisios G.
    Kaisare, Niket S.
    Maestri, Matteo
    AICHE JOURNAL, 2009, 55 (01) : 180 - 191
  • [3] Innovative catalyst design for methane steam reforming intensification
    Ricca, Antonio
    Palma, Vincenzo
    Martino, Marco
    Meloni, Eugenio
    FUEL, 2017, 198 : 175 - 182
  • [4] Process Intensification Aspects for Steam Methane Reforming: An Overview
    Bhat, Shrikant A.
    Sadhukhan, Jhuma
    AICHE JOURNAL, 2009, 55 (02) : 408 - 422
  • [5] Millisecond methane steam reforming for hydrogen production: A computational fluid dynamics study
    Chen, Junjie
    Gao, Xuhui
    Yan, Longfei
    Xu, Deguang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (29) : 12948 - 12969
  • [6] Novel structured catalysts configuration for intensification of steam reforming of methane
    Palma, Vincenzo
    Martino, Marco
    Meloni, Eugenio
    Ricca, Antonio
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (03) : 1629 - 1638
  • [7] Catalyst design for methane steam reforming
    Arcotumapathy, Viswanathan
    Vo, Dai-Viet N.
    Chesterfield, Dean
    Tin, Cao T.
    Siahvashi, Arman
    Lucien, Frank P.
    Adesina, Adesoji A.
    APPLIED CATALYSIS A-GENERAL, 2014, 479 : 87 - 102
  • [8] MESOPOROUS SILICA CATALYST FOR STEAM REFORMING PROCESS
    Matei, D.
    Ezeanu, D. S.
    Cursaru, D. L.
    Digest Journal of Nanomaterials and Biostructures, 2016, 11 (04) : 1343 - 1350
  • [9] Process intensification for hydrogen production through glycerol steam reforming
    Macedo, M. Salome
    Soria, M. A.
    Madeira, Luis M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 146
  • [10] Methane steam reforming in large pore catalyst
    Oliveira, Eduardo L. G.
    Grande, Carlos A.
    Rodrigues, Alirio E.
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (05) : 1539 - 1550