Strain-driven thermodynamic stability and electronic transitions in ZnX (X = O, S, Se, and Te) monolayers

被引:38
作者
Chaurasiya, Rajneesh [1 ,2 ]
Dixit, Ambesh [1 ,2 ]
Pandey, Ravindra [3 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Phys, Jodhpur 342037, Rajasthan, India
[2] Indian Inst Technol Jodhpur, Ctr Solar Energy, Jodhpur 342037, Rajasthan, India
[3] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
关键词
METAL DICHALCOGENIDES; MECHANICAL-PROPERTIES; OPTICAL-PROPERTIES; BAND PARAMETERS; STRENGTH; MOS2;
D O I
10.1063/1.5053680
中图分类号
O59 [应用物理学];
学科分类号
摘要
Semiconducting Zn chalcogenide monolayers are important members of the 2D family of materials due to their unique electronic properties. In this paper, we focus on strain-modulated electronic properties of monolayers of ZnX, with X being O, S, Se, and Te. ZnO and ZnS monolayers have a hexagonal graphene-like planar structure, while ZnSe and ZnTe monolayers exhibit slightly buckled silicene and germanene-like structures, respectively. Density functional theory calculations find the hexagonal ZnO monolayer to be dynamically stable. However, ZnS, ZnSe, and ZnTe monolayers are predicted to be less stable with small imaginary frequencies. The application of tensile strain to these monolayers, interestingly, yields stability of dynamically less stable structures together with the modification in the nature of the bandgap from direct to indirect. For a tensile strain of about 8%, a closure of the bandgap in ZnTe is predicted with the semiconductor-metal transition. The results, therefore, find strain-induced stability and modification in electronic properties of monolayers of Zn chalcogenides, suggesting the use of these monolayers for novel device applications.
引用
收藏
页数:15
相关论文
共 62 条
[1]  
[Anonymous], 2009, Properties of Group-IV, III-V and II-VI Semiconductors
[2]   PSEUDOPOTENTIALS THAT WORK - FROM H TO PU [J].
BACHELET, GB ;
HAMANN, DR ;
SCHLUTER, M .
PHYSICAL REVIEW B, 1982, 26 (08) :4199-4228
[3]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[4]  
Behera H., 2012, ARXIV12103309
[5]   Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure [J].
Behera, Harihar ;
Mukhopadhyay, Gautam .
PHYSICS LETTERS A, 2012, 376 (45) :3287-3289
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]  
Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
[8]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[9]   Recent development of two-dimensional transition metal dichalcogenides and their applications [J].
Choi, Wonbong ;
Choudhary, Nitin ;
Han, Gang Hee ;
Park, Juhong ;
Akinwande, Deji ;
Lee, Young Hee .
MATERIALS TODAY, 2017, 20 (03) :116-130
[10]   Gap opening in graphene by shear strain [J].
Cocco, Giulio ;
Cadelano, Emiliano ;
Colombo, Luciano .
PHYSICAL REVIEW B, 2010, 81 (24)