Solution Classification With Portable Smartphone-Based Spectrometer System Under Variant Shooting Conditions by Using Convolutional Neural Network

被引:5
作者
Kong, Weichao [1 ]
Kuang, Dengfeng [1 ]
Wen, Yuxiang [1 ]
Zhao, Mengxian [1 ]
Huang, Jinhui [2 ]
Yang, Chen [2 ]
机构
[1] Nankai Univ, Inst Modern Opt, Tianjin Key Lab Microscale Opt Informat Sci & Tec, Tianjin 300350, Peoples R China
[2] Nankai Univ, Coll Environm Sci & Engn, Sino Canada Joint R&D Ctr Water & Environm Safety, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Ions; Cameras; Convolution; Optical sensors; Reliability; Mobile handsets; CNNs; portable smartphone spectrometer; spectral classification; PHOSPHATE; WATER; PLATFORM; CNN;
D O I
10.1109/JSEN.2020.2983733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rapid development of smartphone-based devices has facilitated on-site measurements, which approach to laboratory-level instrument performance. However, the reliability of these instruments is inevitably limited by the external environment factors. Here, we report on a portable smartphone spectrometer without any external power supply. Using this spectrometer to analyze the diffractive patterns of multiple samples under variant shooting conditions, we verify the influence of external parameters on spectrum. Convolutional neural network is proposed here to perform solution classification under variant shooting conditions and the classification prediction accuracy is more than 99.5%.
引用
收藏
页码:8789 / 8796
页数:8
相关论文
共 34 条
[21]   Smartphone-based detection of dyes in water for environmental sustainability [J].
Ozdemir, Gizem Kocakusak ;
Bayram, Abdullah ;
Kilic, Volkan ;
Horzum, Nesrin ;
Solmaz, Mehmet E. .
ANALYTICAL METHODS, 2017, 9 (04) :579-585
[22]   Deep Learning Enhanced Mobile-Phone Microscopy [J].
Rivenson, Yair ;
Koydemir, Hatice Ceylan ;
Wang, Hongda ;
Wei, Zhensong ;
Ren, Zhengshuang ;
Gunaydin, Harun ;
Zhang, Yibo ;
Gorocs, Zoltan ;
Liang, Kyle ;
Tseng, Derek ;
Ozcan, Aydogan .
ACS PHOTONICS, 2018, 5 (06) :2354-2364
[23]   Deep learning microscopy [J].
Rivenson, Yair ;
Gorocs, Zoltan ;
Gunaydin, Harun ;
Zhang, Yibo ;
Wang, Hongda ;
Ozcan, Aydogan .
OPTICA, 2017, 4 (11) :1437-1443
[24]   Smartphone-based biosensors: A critical review and perspectives [J].
Roda, Aldo ;
Michelini, Elisa ;
Zangheri, Martina ;
Di Fusco, Massimo ;
Calabria, Donato ;
Simoni, Patrizia .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2016, 79 :317-325
[25]   DeepISP: Toward Learning an End-to-End Image Processing Pipeline [J].
Schwartz, Eli ;
Giryes, Raja ;
Bronstein, Alex M. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (02) :912-923
[26]  
Selim A., 2017, GLOBECOM 2017 2017 I, P1, DOI [DOI 10.1109/GLOCOM.2017.8254105, 10.1109/GLOCOM.2017.8254105]
[27]   Image Augmentation for Object Image Classification Based On Combination of Pre-Trained CNN and SVM [J].
Shima, Yoshihiro .
2ND INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2018), 2018, 1004
[28]   CNN-RNN: A Unified Framework for Multi-label Image Classification [J].
Wang, Jiang ;
Yang, Yi ;
Mao, Junhua ;
Huang, Zhiheng ;
Huang, Chang ;
Xu, Wei .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2285-2294
[29]   Smartphone spectrometer for colorimetric biosensing [J].
Wang, Yi ;
Liu, Xiaohu ;
Chen, Peng ;
Nhung Thi Tran ;
Zhang, Jinling ;
Chia, Wei Sheng ;
Boujday, Souhir ;
Liedberg, Bo .
ANALYST, 2016, 141 (11) :3233-3238
[30]   Microaxicave colour analysis system for fluoride concentration using a smartphone [J].
Wen, Yuxiang ;
Kuang, Dengfeng ;
Huang, Jinhui ;
Zhang, Yi .
RSC ADVANCES, 2017, 7 (67) :42339-42344