Solution Classification With Portable Smartphone-Based Spectrometer System Under Variant Shooting Conditions by Using Convolutional Neural Network

被引:5
作者
Kong, Weichao [1 ]
Kuang, Dengfeng [1 ]
Wen, Yuxiang [1 ]
Zhao, Mengxian [1 ]
Huang, Jinhui [2 ]
Yang, Chen [2 ]
机构
[1] Nankai Univ, Inst Modern Opt, Tianjin Key Lab Microscale Opt Informat Sci & Tec, Tianjin 300350, Peoples R China
[2] Nankai Univ, Coll Environm Sci & Engn, Sino Canada Joint R&D Ctr Water & Environm Safety, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Ions; Cameras; Convolution; Optical sensors; Reliability; Mobile handsets; CNNs; portable smartphone spectrometer; spectral classification; PHOSPHATE; WATER; PLATFORM; CNN;
D O I
10.1109/JSEN.2020.2983733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rapid development of smartphone-based devices has facilitated on-site measurements, which approach to laboratory-level instrument performance. However, the reliability of these instruments is inevitably limited by the external environment factors. Here, we report on a portable smartphone spectrometer without any external power supply. Using this spectrometer to analyze the diffractive patterns of multiple samples under variant shooting conditions, we verify the influence of external parameters on spectrum. Convolutional neural network is proposed here to perform solution classification under variant shooting conditions and the classification prediction accuracy is more than 99.5%.
引用
收藏
页码:8789 / 8796
页数:8
相关论文
共 34 条
[11]   Smartphone-based analytical biosensors [J].
Huang, Xiwei ;
Xu, Dandan ;
Chen, Jin ;
Liu, Jixuan ;
Li, Yangbo ;
Song, Jing ;
Ma, Xing ;
Guo, Jinhong .
ANALYST, 2018, 143 (22) :5339-5351
[12]   Smartphone-based platform optical setup measuring π/256 optical phase difference in an interference process [J].
Hussain, Iftak ;
Nath, Pabitra .
APPLIED OPTICS, 2015, 54 (18) :5739-5742
[13]   A Smartphone-based Fluorescence Microscope Utilizing an External Phone Camera Lens Module [J].
Kim, Jung-Hyun ;
Joo, Hong-Gu ;
Kim, Tae-Hoon ;
Ju, Young-Gu .
BIOCHIP JOURNAL, 2015, 9 (04) :285-292
[14]   Fluorescence detection for phosphate monitoring using reverse injection analysis [J].
Kroeckel, Lars ;
Lehmann, Hartmut ;
Wieduwilt, Torsten ;
Schmidt, Markus A. .
TALANTA, 2014, 125 :107-113
[15]   FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria [J].
Lasch, Peter ;
Staemmler, Maren ;
Zhang, Miao ;
Baranska, Malgorzata ;
Bosch, Alejandra ;
Majzner, Katarzyna .
ANALYTICAL CHEMISTRY, 2018, 90 (15) :8896-8904
[16]   Simultaneous determination of silicate and phosphate in boiler water at power plants based on series flow cells by using flow injection spectrophotometry [J].
Li, YS ;
Muo, Y ;
Xie, HM .
ANALYTICA CHIMICA ACTA, 2002, 455 (02) :315-325
[17]   CRF learning with CNN features for image segmentation [J].
Liu, Fayao ;
Lin, Guosheng ;
Shen, Chunhua .
PATTERN RECOGNITION, 2015, 48 (10) :2983-2992
[18]  
Mody M, 2015, 2015 IEEE 5TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - BERLIN (ICCE-BERLIN), P158, DOI 10.1109/ICCE-Berlin.2015.7391221
[19]   High-Sensitive Smartphone-Based Raman System Based on Cloud Network Architecture [J].
Mu, Taotao ;
Li, Su ;
Feng, Huanhuan ;
Zhang, Chengchen ;
Wang, Bing ;
Ma, Xing ;
Guo, Jinhong ;
Huang, Bill ;
Zhu, Lianqing .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2019, 25 (01)
[20]   Spectrophotometric flow system using vanadomolybdophosphate detection chemistry and a liquid waveguide capillary cell for the determination of phosphate with improved sensitivity in surface and ground water samples [J].
Neves, M. Sofia A. C. ;
Souto, M. Renata S. ;
Toth, Ildiko V. ;
Victal, Sergio M. A. ;
Drumond, M. Claudia ;
Rangel, Antonio O. S. S. .
TALANTA, 2008, 77 (02) :527-532