Linear stability for a free boundary tumor model with a periodic supply of external nutrients

被引:19
作者
Huang, Yaodan [1 ]
Zhang, Zhengce [1 ]
Hu, Bei [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Univ Notre Dame, Dept Appl Computat Math & Stat, Notre Dame, IN 46556 USA
基金
中国国家自然科学基金;
关键词
free boundary problem; linear stability; periodic solution; tumor growth; MATHEMATICAL-MODEL; ASYMPTOTIC-BEHAVIOR; WELL-POSEDNESS; STATIONARY SOLUTION; SOLID TUMOR; GROWTH; BIFURCATION; INSTABILITY; EXISTENCE; ADHESION;
D O I
10.1002/mma.5412
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a free boundary tumor model with a periodic supply of external nutrients, so that the nutrient concentration sigma satisfies sigma = phi(t) on the boundary, where phi(t) is a positive periodic function with period T. A parameter mu in the model is proportional to the "aggressiveness" of the tumor. If 0<sigma similar to<min0 <= t <= T phi(t), where sigma similar to is a threshold concentration for proliferation, Bai and Xu [Pac J Appl Math. 2013;5;217-223] proved that there exists a unique radially symmetric T-periodic positive solution (sigma(*)(r,t),p(*)(r,t),R-*(t)), which is stable for any mu > 0 with respect to all radially symmetric perturbations. We prove that under nonradially symmetric perturbations, there exists a number mu(*) such that if 0 < mu < mu(*), then the T-periodic solution is linearly stable, whereas if mu > mu(*), then the T-periodic solution is linearly unstable.
引用
收藏
页码:1039 / 1054
页数:16
相关论文
共 54 条