Boundary layer asymptotic behavior of incompressible Navier-Stokes equation in a cylinder with small viscosity

被引:0
作者
Duan Zhiwen [1 ]
Han Shuxia [1 ]
Zhou Li [1 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
关键词
boundary layer; incompressible Navier-Stokes equation; small viscosity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity epsilon) incompressible Navier-Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes equations linearized around a fixed velocity flow: the authors study the convergence as epsilon -> 0 to the inviscid type equations, the authors define the correctors needed to resolve the boundary layer and obtain convergence results valid up to the boundary and the authors also study the behavior of the boundary layer when, simultaneously, time and the Reynolds number tend to infinity, in which case the boundary layer tends to pervade the whole domain.
引用
收藏
页码:449 / 468
页数:20
相关论文
共 24 条
  • [1] [Anonymous], VORTICITY INCOMPRESS
  • [2] BALIAN R, 1977, FLUID DYNAMICS
  • [3] Batchelor David., 2000, An Introduction to Fluid Dynamics
  • [4] INVISCID LIMIT FOR VORTEX PATCHES
    CONSTANTIN, P
    WU, JH
    [J]. NONLINEARITY, 1995, 8 (05) : 735 - 742
  • [5] USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS
    CRANDALL, MG
    ISHII, H
    LIONS, PL
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) : 1 - 67
  • [6] Eckhaus W., 1979, ASYMPTOTIC ANAL SING, V9
  • [7] Greenspan H. P., 1968, Theory of Rotating Fluids
  • [8] Kato T., 1972, Journal of Functional Analysis, V9, P296, DOI 10.1016/0022-1236(72)90003-1
  • [9] Ladyzenskaja O. A., 1968, Linear and Quasi-linear Equation of Parabolic Type
  • [10] Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS