New exact solutions for the Kaup-Kupershmidt equation

被引:36
作者
Inc, Mustafa [1 ,2 ]
Miah, Mamun [3 ]
Chowdhury, Akher [4 ]
Ali, Shahadat [5 ]
Rezazadeh, Hadi [6 ]
Akinlar, Mehmet Ali [7 ]
Chu, Yu-Ming [8 ,9 ]
机构
[1] Firat Univ, Dept Math, Elazig, Turkey
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Khulna Univ Engn & Technol, Dept Math, Khulna, Bangladesh
[4] Bangladesh Army Univ Engn & Technol, Dept Math, Natore, Bangladesh
[5] Noakhali Sci & Technol Univ, Dept Appl Math, Noakhali, Bangladesh
[6] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
[7] Yildiz Tech Univ, Dept Math Engn, Istanbul, Turkey
[8] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[9] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 06期
关键词
Kaup-Kupershmidt equation; the method of double (G '/G; 1/G)-expansion; exact solutions; TRAVELING-WAVE SOLUTIONS; ELLIPTIC FUNCTION SOLUTIONS; EXP-FUNCTION METHOD; 1/G)-EXPANSION METHOD; (G'/G;
D O I
10.3934/math.2020432
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new exact solutions for the (1+1)-dimensional Kaup-Kupershmidt (KK) equation by employing method of double (G'/G, 1/G)-expansion. We express solutions by hyperbolic, trigonometric and rational functions explicitly. Computational results indicate the efficiency and applicability potential of the method.
引用
收藏
页码:6726 / 6738
页数:13
相关论文
共 50 条
  • [41] Several categories of exact solutions of the third-order flow equation of the Kaup–Newell system
    Huian Lin
    Jingsong He
    Lihong Wang
    Dumitru Mihalache
    Nonlinear Dynamics, 2020, 100 : 2839 - 2858
  • [42] New exact solutions for Chan-Hilliard equation by new sub-equation method
    Rezazadeh, Hadi
    Neirameh, Ahmad
    Eslami, Mostafa
    Bekir, Ahmet
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (06) : 849 - 861
  • [43] New exact infinite sequence solutions to generalized Boussinesq equation
    Taogetusang
    Sirendaoerji
    ACTA PHYSICA SINICA, 2010, 59 (07) : 4413 - 4419
  • [44] Exact solutions of Whitham-Broer-Kaup equations with variable coefficients
    Liu Yong
    Liu Xi-Qiang
    ACTA PHYSICA SINICA, 2014, 63 (20)
  • [45] New exact solutions to a new Hamiltonian amplitude equation
    Peng, YZ
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (08) : 1889 - 1890
  • [46] New exact solutions for generalized Gardner equation
    Demiray, Seyma T.
    Bulut, Hasan
    KUWAIT JOURNAL OF SCIENCE, 2017, 44 (01) : 1 - 8
  • [47] New exact solutions for Kudryashov–Sinelshchikov equation
    Junliang Lu
    Advances in Difference Equations, 2018
  • [48] N-soliton solutions and localized structures for the (2+1)-dimensional Broer-Kaup-Kupershmidt system
    Wen, Xiao-Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) : 3346 - 3355
  • [49] Several categories of exact solutions of the third-order flow equation of the Kaup-Newell system
    Lin, Huian
    He, Jingsong
    Wang, Lihong
    Mihalache, Dumitru
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2839 - 2858
  • [50] Analytical solutions of the generalized Kaup–Newell equation
    Kutukov A.A.
    Kudryashov N.A.
    Optik, 2023, 293