AC-Capacitance Techniques for Interface Trap Analysis in GaN-Based Buried-Channel MIS-HEMTs

被引:93
作者
Yang, Shu [1 ]
Liu, Shenghou [1 ]
Lu, Yunyou [1 ]
Liu, Cheng [1 ]
Chen, Kevin J. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
AlGaN/GaN; capacitance-voltage (C-V); frequency/temperature dispersion; interface traps; metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs); pulse-mode current-voltage; threshold voltage instability;
D O I
10.1109/TED.2015.2420690
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Effective interface trap characterization approaches are indispensable in the development of gate stack and dielectric surface passivation technologies in III-nitride (III-N) insulated-gate power switching transistors for enhanced stability and dynamic performance. In III-N metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) that feature a buried channel, the polarized barrier layer separates the critical dielectric/III-N interface from the two-dimensional electron gas (2DEG) channel and consequently complicates interface trap analysis. The barrier layer not only causes underestimation/uncertainty in interface trap extraction using conventional ac-conductance method but also allows the Fermi level dipping deep into the bandgap at the pinch-off of the 2DEG channel. To address these issues, we analyze the frequency/temperature dispersions of the second slope in capacitance-voltage characteristics and develop systematic ac-capacitance techniques to realize interface trap mapping in MIS-HEMTs. The correlation between ac-capacitance and pulse-mode hysteresis measurements show that appropriate gate bias need to be selected in the interface trap characterization of MIS-HEMTs, in order to match the time constant of interface traps at the Fermi level with ac frequency and pulsewidth.
引用
收藏
页码:1870 / 1878
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 2013, 2013 IEEE INT EL DEV
[2]   Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states [J].
Capriotti, M. ;
Lagger, P. ;
Fleury, C. ;
Oposich, M. ;
Bethge, O. ;
Ostermaier, C. ;
Strasser, G. ;
Pogany, D. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (02)
[3]   1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic ON-Resistance [J].
Chu, Rongming ;
Corrion, Andrea ;
Chen, Mary ;
Li, Ray ;
Wong, Danny ;
Zehnder, Daniel ;
Hughes, Brian ;
Boutros, Karim .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (05) :632-634
[4]   Electronic surface and dielectric interface states on GaN and AlGaN [J].
Eller, Brianna S. ;
Yang, Jialing ;
Nemanich, Robert J. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2013, 31 (05)
[5]   Nitrogen vacancies as major point defects in gallium nitride [J].
Ganchenkova, M. G. ;
Nieminen, R. M. .
PHYSICAL REVIEW LETTERS, 2006, 96 (19)
[6]  
Gao F., 2006, 2006 INT ELECT DEVIC, P1, DOI [10.1109/IEDM.2006.346743, DOI 10.1109/IEDM.2006.346743]
[7]   Discrete surface state related to nitrogen-vacancy defect on plasma-treated GaN surfaces [J].
Hashizume, T ;
Nakasaki, R .
APPLIED PHYSICS LETTERS, 2002, 80 (24) :4564-4566
[8]   Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges [J].
Huang, Sen ;
Jiang, Qimeng ;
Yang, Shu ;
Tang, Zhikai ;
Chen, Kevin J. .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (02) :193-195
[9]   GaN Power Transistors on Si Substrates for Switching Applications [J].
Ikeda, Nariaki ;
Niiyama, Yuki ;
Kambayashi, Hiroshi ;
Sato, Yoshihiro ;
Nomura, Takehiko ;
Kato, Sadahiro ;
Yoshida, Seikoh .
PROCEEDINGS OF THE IEEE, 2010, 98 (07) :1151-1161
[10]   GaN on Si Technologies for Power Switching Devices [J].
Ishida, Masahiro ;
Ueda, Tetsuzo ;
Tanaka, Tsuyoshi ;
Ueda, Daisuke .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (10) :3053-3059