Protein conformational flexibility prediction using machine learning

被引:12
|
作者
Trott, Oleg [1 ]
Siggers, Ken [1 ]
Rost, Burkhard [1 ]
Palmer, Arthur G., III [1 ]
机构
[1] Columbia Univ Coll Phys & Surg, Dept Biochem & Mol Biophys, New York, NY 10032 USA
关键词
fibronectin; FREAC-11; generalized order parameter; NMR; neural network; relaxation; tenascin;
D O I
10.1016/j.jmr.2008.01.011
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Using a data set of 16 proteins, a neural network has been trained to predict backbone N-15 generalized order parameters from the three-dimensional structures of proteins. The final network parameterization contains six input features. The average prediction accuracy, as measured by the Pearson's correlation coefficient between experimental and predicted values of the square of the generalized order parameter is > 0.70. Predicted order parameters for non-terminal amino acid residues depends most strongly on the local packing density and the probability that the residue is located in regular secondary structure. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [31] Machine learning approaches for the prediction of public EV charge point flexibility
    Bellizio, Federica
    Dijkstra, Bart
    Fertig, Angelika
    Van Dijk, Jules
    Heer, Philipp
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2025, 42
  • [32] Conformational Flexibility in the Transmembrane Protein TSPO
    Jaremko, Lukasz
    Jaremko, Mariusz
    Giller, Karin
    Becker, Stefan
    Zweckstetter, Markus
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (46) : 16555 - 16563
  • [33] Machine learning techniques for protein function prediction
    Bonetta, Rosalin
    Valentino, Gianluca
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2020, 88 (03) : 397 - 413
  • [34] Direct generation of protein conformational ensembles via machine learning
    Janson, Giacomo
    Valdes-Garcia, Gilberto
    Heo, Lim
    Feig, Michael
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [35] Direct generation of protein conformational ensembles via machine learning
    Giacomo Janson
    Gilberto Valdes-Garcia
    Lim Heo
    Michael Feig
    Nature Communications, 14
  • [36] Structure-Based Approaches for Protein-Protein Interaction Prediction Using Machine Learning and Deep Learning
    Kiouri, Despoina P.
    Batsis, Georgios C.
    Chasapis, Christos T.
    BIOMOLECULES, 2025, 15 (01)
  • [37] Disease Prediction using Machine Learning
    Dubey, Subham
    Banik, Sreerupa
    Ghosh, Deba
    Dey, Akash
    Das, Rishabh
    Dey, Ipsita
    Chowdhury, Sagarika
    Dey, Prianka
    2024 2nd World Conference on Communication and Computing, WCONF 2024, 2024,
  • [38] Gentrification Prediction Using Machine Learning
    Alejandro, Yesenia
    Palafox, Leon
    ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 187 - 199
  • [39] Diabetes Prediction Using Machine Learning
    Tian, Stephanie
    Hui, Guanghui
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, : 16 - 20
  • [40] Recruitment Prediction using Machine Learning
    Reddy, Jagan Mohan D.
    Regella, Sirisha
    Seelam, Srinivasa Reddy
    PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,