Protein conformational flexibility prediction using machine learning

被引:12
|
作者
Trott, Oleg [1 ]
Siggers, Ken [1 ]
Rost, Burkhard [1 ]
Palmer, Arthur G., III [1 ]
机构
[1] Columbia Univ Coll Phys & Surg, Dept Biochem & Mol Biophys, New York, NY 10032 USA
关键词
fibronectin; FREAC-11; generalized order parameter; NMR; neural network; relaxation; tenascin;
D O I
10.1016/j.jmr.2008.01.011
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Using a data set of 16 proteins, a neural network has been trained to predict backbone N-15 generalized order parameters from the three-dimensional structures of proteins. The final network parameterization contains six input features. The average prediction accuracy, as measured by the Pearson's correlation coefficient between experimental and predicted values of the square of the generalized order parameter is > 0.70. Predicted order parameters for non-terminal amino acid residues depends most strongly on the local packing density and the probability that the residue is located in regular secondary structure. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [1] A machine learning approach for the prediction of protein surface loop flexibility
    Hwang, Howook
    Vreven, Thom
    Whitfield, Troy W.
    Wiehe, Kevin
    Weng, Zhiping
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (08) : 2467 - 2474
  • [2] Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble
    Audagnotto, Martina
    Czechtizky, Werngard
    De Maria, Leonardo
    Kack, Helena
    Papoian, Garegin
    Tornberg, Lars
    Tyrchan, Christian
    Ulander, Johan
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [3] Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble
    Martina Audagnotto
    Werngard Czechtizky
    Leonardo De Maria
    Helena Käck
    Garegin Papoian
    Lars Tornberg
    Christian Tyrchan
    Johan Ulander
    Scientific Reports, 12 (1)
  • [4] Prediction of Protein Subcellular Localization using Machine Learning
    Upama, Paramita Basak
    Akhter, Shahin
    Bin Asad, Mohammad Imam Hasan
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [5] Protein Secondary Structure Prediction Using Machine Learning
    Saha, Sriparna
    Ekbal, Asif
    Sharma, Sidharth
    Bandyopadhyay, Sanghamitra
    Maulik, Ujjwal
    INTELLIGENT INFORMATICS, 2013, 182 : 57 - +
  • [6] Protein secondary structure prediction using machine learning
    Zhang, BF
    Chen, ZH
    Murphey, YL
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 532 - 537
  • [7] Protein Disorder Prediction Using Machine Learning Techniques
    Balto, Badee
    Munshi, Amr
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (03): : 575 - 579
  • [8] Challenges For Protein Structure Prediction: Strained Geometry And Conformational Flexibility
    Tsutakawa, Susan
    Easton, Alyssa
    Chinnam, Nagababu
    Shen, Runze
    Hura, Greg
    Kryshtafovych, Andriy
    Lovering, Andrew
    Vanraaj, Mark
    Fidelis, Krzysztof
    Tainer, John
    PROTEIN SCIENCE, 2023, 32 (12)
  • [9] Accurate prediction of Snare Protein Sequence using Machine Learning
    Talpur, Dani Bux
    Shaikh, Salahuddin
    Khowaja, Ashfaque
    Adnan, Saifullah
    Ghulam, Ali
    BIOSCIENCE RESEARCH, 2022, 19 (03): : 1414 - 1422
  • [10] Protein structure prediction and understanding using machine learning methods
    Pan, Y
    2005 IEEE International Conference on Granular Computing, Vols 1 and 2, 2005, : 13 - 13