Mathematical model for assessing the impact of vaccination and treatment on measles transmission dynamics

被引:25
作者
Garba, S. M. [1 ]
Safi, M. A. [2 ]
Usaini, S. [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[2] Hashemite Univ, Dept Math, Zarqa, Jordan
关键词
equilibria; measles; reproduction number; stability; treatment; vaccination; BACKWARD BIFURCATIONS; EPIDEMICS;
D O I
10.1002/mma.4462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A deterministic model for the transmission dynamics of measles in a population with fraction of vaccinated individuals is designed and rigorously analyzed. The model with standard incidence exhibits the phenomenon of backward bifurcation, where a stable disease-free equilibrium coexists with a stable endemic equilibrium whenever the associated reproduction number is less than unity. This phenomenon can be removed if either measles vaccine is assumed to be perfect or disease related mortality rates are negligible. In the latter case, the disease-free equilibrium is shown to be globally asymptotically stable whenever the associated reproduction number is less than unity. Furthermore, the model has a unique endemic equilibrium whenever the reproduction threshold exceeds unity. This equilibrium is shown, using a nonlinear Lyapunov function of Goh-Volterra type, to be globally asymptotically stable for a special case.
引用
收藏
页码:6371 / 6388
页数:18
相关论文
共 50 条
[41]   The effect of backward bifurcation in controlling measles transmission by vaccination [J].
Nudee, K. ;
Chinviriyasit, S. ;
Chinviriyasit, W. .
CHAOS SOLITONS & FRACTALS, 2019, 123 :400-412
[42]   Use of mathematical modeling in predicting the impact of a disease: An example of measles dynamic model [J].
Cavaljuga, Semra ;
Cavaljuga, Mladen ;
Cavaljuga, Mira .
HEALTHMED, 2009, 3 (01) :17-23
[43]   Cost-effectiveness analysis on measles transmission with vaccination and treatment intervention [J].
Rahmayani, Shinta A. ;
Aldila, Dipo ;
Handari, Bevina D. .
AIMS MATHEMATICS, 2021, 6 (11) :12491-12527
[44]   A Mathematical Model for the Transmission Dynamics of Lymphatic Filariasis with Intervention Strategies [J].
Simelane, S. M. ;
Mwamtobe, P. M. ;
Abelman, S. ;
Tchuenche, J. M. .
ACTA BIOTHEORETICA, 2020, 68 (03) :297-320
[45]   Deterministic modelling for transmission of Human Papillomavirus 6/11: impact of vaccination [J].
Ribassin-Majed, Laureen ;
Lounes, Rachid ;
Clemencon, Stephan .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2014, 31 (02) :125-149
[46]   Qualitative dynamics of a vaccination model for HSV-2 [J].
Podder, Chandra N. ;
Gumel, Abba B. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2010, 75 (01) :75-107
[47]   ON THE DYNAMICS OF A VACCINATION MODEL WITH MULTIPLE TRANSMISSION WAYS [J].
Liao, Shu ;
Yang, Weiming .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (04) :761-772
[48]   Impact of mass vaccination campaigns on measles transmission during an outbreak in Guinea, 2017 [J].
Linton, Natalie Marie ;
Keita, Mory ;
de Almeida, Maria Moitinho ;
Cuesta, Julita Gil ;
Guha-Sapir, Debarati ;
Nishiura, Hiroshi ;
van Loenhout, Joris Adriaan Frank .
JOURNAL OF INFECTION, 2020, 80 (03) :326-332
[49]   Assessing the impact of temperature on malaria transmission dynamics [J].
Ngarakana-Gwasira E.T. ;
Bhunu C.P. ;
Mashonjowa E. .
Afrika Matematika, 2014, 25 (4) :1095-1112
[50]   Transmission dynamics and optimal control of measles epidemics [J].
Pang, Liuyong ;
Ruan, Shigui ;
Liu, Sanhong ;
Zhao, Zhong ;
Zhang, Xinan .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :131-147