Mathematical model for assessing the impact of vaccination and treatment on measles transmission dynamics

被引:25
作者
Garba, S. M. [1 ]
Safi, M. A. [2 ]
Usaini, S. [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[2] Hashemite Univ, Dept Math, Zarqa, Jordan
关键词
equilibria; measles; reproduction number; stability; treatment; vaccination; BACKWARD BIFURCATIONS; EPIDEMICS;
D O I
10.1002/mma.4462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A deterministic model for the transmission dynamics of measles in a population with fraction of vaccinated individuals is designed and rigorously analyzed. The model with standard incidence exhibits the phenomenon of backward bifurcation, where a stable disease-free equilibrium coexists with a stable endemic equilibrium whenever the associated reproduction number is less than unity. This phenomenon can be removed if either measles vaccine is assumed to be perfect or disease related mortality rates are negligible. In the latter case, the disease-free equilibrium is shown to be globally asymptotically stable whenever the associated reproduction number is less than unity. Furthermore, the model has a unique endemic equilibrium whenever the reproduction threshold exceeds unity. This equilibrium is shown, using a nonlinear Lyapunov function of Goh-Volterra type, to be globally asymptotically stable for a special case.
引用
收藏
页码:6371 / 6388
页数:18
相关论文
共 50 条
[21]   Estimating the Impact of Vaccination Campaigns on Measles Transmission in Somalia [J].
Thakkar, Niket ;
Abubakar, Ali Haji Adam ;
Shube, Mukhtar ;
Jama, Mustafe Awil ;
Derow, Mohamed ;
Lambach, Philipp ;
Ashmony, Hossam ;
Farid, Muhammad ;
Sim, So Yoon ;
O'Connor, Patrick ;
Minta, Anna ;
Bose, Anindya Sekhar ;
Musanhu, Patience ;
Hasan, Quamrul ;
Bar-Zeev, Naor ;
Malik, Sk Md Mamunur Rahman .
VACCINES, 2024, 12 (03)
[22]   Assessing the impact of booster vaccination on diphtheria transmission: Mathematical modeling and risk zone mapping [J].
Fauzi, Ilham Saiful ;
Nuraini, Nuning ;
Sari, Ade Maya ;
Wardani, Imaniah Bazlina ;
Taurustiati, Delsi ;
Simanullang, Purnama Magdalena ;
Lestari, Bony Wiem .
INFECTIOUS DISEASE MODELLING, 2024, 9 (01) :245-262
[23]   Modeling transmission dynamics of measles in Nepal and its control with monitored vaccination program [J].
Pokharel, Anjana ;
Adhikari, Khagendra ;
Gautam, Ramesh ;
Uprety, Kedar Nath ;
Vaidya, Naveen K. .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (08) :8554-8579
[24]   Stability and Threshold Dynamics in a Seasonal Mathematical Model for Measles Outbreaks with Double-Dose Vaccination [J].
Ibrahim, Mahmoud A. ;
Denes, Attila .
MATHEMATICS, 2023, 11 (08)
[25]   Assessing the Impact of Vaccination on the Dynamics of COVID-19 in Africa: A Mathematical Modeling Study [J].
Montcho, Yvette ;
Nalwanga, Robinah ;
Azokpota, Paustella ;
Doumate, Jonas Tele ;
Lokonon, Bruno Enagnon ;
Salako, Valere Kolawole ;
Wolkewitz, Martin ;
Glele Kakai, Romain .
VACCINES, 2023, 11 (04)
[26]   A mathematical investigation of an "SVEIR" epidemic model for the measles transmission [J].
El Hajji, Miled ;
Albargi, Amer Hassan .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (03) :2853-2875
[27]   Mathematical Model of Tuberculosis Transmission in A Two-Strain with Vaccination [J].
Nainggolan, J. ;
Supian, S. ;
Supriatna, A. K. ;
Anggriani, N. .
SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2013), 2014, 1587 :70-73
[28]   Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment [J].
Sharomi, Oluwaseun ;
Podder, Chandra N. ;
Gumel, Abba B. ;
Song, Baojun .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2008, 5 (01) :145-174
[29]   Mathematical analysis of an age-structured model for malaria transmission dynamics [J].
Forouzannia, Farinaz ;
Gumel, Abba B. .
MATHEMATICAL BIOSCIENCES, 2014, 247 :80-94
[30]   Measles transmission dynamics and optimal control in Guangdong, China [J].
Kong, Lingming ;
Sun, Limei ;
Wang, Zhen ;
Li, Zhaowan ;
Ren, Jingyi ;
Sun, Jiufeng ;
Liu, Jinjin ;
Zhu, Guanghu .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2025,