Local regularity results for minima of anisotropic functionals and solutions of anisotropic equations

被引:0
作者
Hongya, Gao [1 ,2 ]
Jinjing, Qiao [1 ]
Yong, Wang [3 ]
Yuming, Chu [4 ]
机构
[1] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
[2] Study Ctr Math Hebei Prov, Shijiazhuang 050016, Peoples R China
[3] Chengde Teacher Coll Nationalit, Dept Math, Chengdu 067000, Peoples R China
[4] Huzhou Teachers Coll, Fac Sci, Huzhou 313000, Peoples R China
关键词
Full Article; Regularity Result; Publisher Note; Local Regularity; Anisotropic Equation;
D O I
10.1155/2008/835736
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives some local regularity results for minima of anisotropic functionals I (u;Omega) = integral(Omega) f(x, u, Du)dx, x is an element of W-loc(1,qi)(Omega) and for solutions of anisotropic equations -div A(x, u, Du) = - Sigma(N)(i=1) (partial derivative f / partial derivative x(i)), u is an element of W-loc(1,qi)(Omega) which can be regarded as generalizations of the classical results. Copyright (C) 2008 Gao Hongya et al.
引用
收藏
页数:11
相关论文
共 8 条
[1]  
[Anonymous], RICERCHE MATEMATICA
[2]  
[Anonymous], 1983, ANN MATH STUDIES
[3]   Local regularity results for minima of functionals of the Calculus of Variation [J].
Giachetti, D ;
Porzio, MM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (04) :463-482
[4]   ON THE REGULARITY OF THE MINIMA OF VARIATIONAL INTEGRALS [J].
GIAQUINTA, M ;
GIUSTI, E .
ACTA MATHEMATICA, 1982, 148 :31-46
[5]  
Ladyz'enskaya O.A., 1968, LINEAR QUASILINEAR E
[6]  
MORREY CB, 1968, MULTIPLE CALCULUS VA
[7]  
STAMPACCHIA G, 1966, SEM MATH SUP PRESS U
[8]  
Trudinger NS, 1977, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-96379-7