Non-Gaussian gravitational clustering field statistics

被引:14
作者
Kitaura, Francisco-Shu [1 ,2 ]
机构
[1] Scuola Normale Super Pisa, SNS, I-56126 Pisa, Italy
[2] Univ Munich, Dept Phys, LMU, D-81679 Munich, Germany
关键词
galaxies: clusters: general; galaxies: statistics; large-scale structure of Universe; LARGE-SCALE STRUCTURE; GALAXY REDSHIFT SURVEY; DIGITAL SKY SURVEY; INFLATIONARY UNIVERSE SCENARIO; 3-POINT CORRELATION-FUNCTIONS; WIENER RECONSTRUCTION; DATA RELEASE; PROBABILITY-DISTRIBUTION; DENSITY PERTURBATIONS; LAGRANGIAN THEORY;
D O I
10.1111/j.1365-2966.2011.19680.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work we investigate the multivariate statistical description of the matter distribution in the non-linear regime. We introduce the multivariate Edgeworth expansion of the lognormal distribution to model the cosmological matter field. Such a technique could be useful to generate and reconstruct three-dimensional non-linear cosmological density fields with the information of higher order correlation functions. We explicitly calculate the expansion up to third order in perturbation theory making use of the multivariate Hermite polynomials up to sixth order. The probability distribution function for the matter field includes at this level the two-point, the three-point and the four-point correlation functions. We use the hierarchical model to formulate the higher order correlation functions based on combinations of the two-point correlation function. This permits us to find compact expressions for the skewness and kurtosis terms of the expanded lognormal field which can be efficiently computed. The method is, however, flexible to incorporate arbitrary higher order correlation functions which have analytical expressions. The applications of such a technique can be especially useful to perform weak-lensing or neutral hydrogen 21-cm line tomography, as well as to directly use the galaxy distribution or the Lyman a forest to study structure formation.
引用
收藏
页码:2737 / 2755
页数:19
相关论文
共 79 条
[1]   THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY [J].
Abazajian, Kevork N. ;
Adelman-McCarthy, Jennifer K. ;
Agueros, Marcel A. ;
Allam, Sahar S. ;
Prieto, Carlos Allende ;
An, Deokkeun ;
Anderson, Kurt S. J. ;
Anderson, Scott F. ;
Annis, James ;
Bahcall, Neta A. ;
Bailer-Jones, C. A. L. ;
Barentine, J. C. ;
Bassett, Bruce A. ;
Becker, Andrew C. ;
Beers, Timothy C. ;
Bell, Eric F. ;
Belokurov, Vasily ;
Berlind, Andreas A. ;
Berman, Eileen F. ;
Bernardi, Mariangela ;
Bickerton, Steven J. ;
Bizyaev, Dmitry ;
Blakeslee, John P. ;
Blanton, Michael R. ;
Bochanski, John J. ;
Boroski, William N. ;
Brewington, Howard J. ;
Brinchmann, Jarle ;
Brinkmann, J. ;
Brunner, Robert J. ;
Budavari, Tamas ;
Carey, Larry N. ;
Carliles, Samuel ;
Carr, Michael A. ;
Castander, Francisco J. ;
Cinabro, David ;
Connolly, A. J. ;
Csabai, Istvan ;
Cunha, Carlos E. ;
Czarapata, Paul C. ;
Davenport, James R. A. ;
de Haas, Ernst ;
Dilday, Ben ;
Doi, Mamoru ;
Eisenstein, Daniel J. ;
Evans, Michael L. ;
Evans, N. W. ;
Fan, Xiaohui ;
Friedman, Scott D. ;
Frieman, Joshua A. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 182 (02) :543-558
[2]   COSMOLOGY FOR GRAND UNIFIED THEORIES WITH RADIATIVELY INDUCED SYMMETRY-BREAKING [J].
ALBRECHT, A ;
STEINHARDT, PJ .
PHYSICAL REVIEW LETTERS, 1982, 48 (17) :1220-1223
[3]   The multiscale morphology filter:: identifying and extracting spatial patterns in the galaxy distribution [J].
Aragón-Calvo, M. A. ;
Jones, B. J. T. ;
van de Weygaert, R. ;
van der Hulst, J. M. .
ASTRONOMY & ASTROPHYSICS, 2007, 474 (01) :315-338
[4]  
BALIAN R, 1989, ASTRON ASTROPHYS, V220, P1
[5]   THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM-FIELDS [J].
BARDEEN, JM ;
BOND, JR ;
KAISER, N ;
SZALAY, AS .
ASTROPHYSICAL JOURNAL, 1986, 304 (01) :15-61
[6]   SPONTANEOUS CREATION OF ALMOST SCALE-FREE DENSITY PERTURBATIONS IN AN INFLATIONARY UNIVERSE [J].
BARDEEN, JM ;
STEINHARDT, PJ ;
TURNER, MS .
PHYSICAL REVIEW D, 1983, 28 (04) :679-693
[7]  
Barndorff-Nielsen H., 1989, ASYMPTOTIC TECHNIQUE
[8]  
BERKOWITZ S, 1970, MATH COMPUT, V24, P537
[9]   PROPERTIES OF THE COSMOLOGICAL DENSITY DISTRIBUTION FUNCTION [J].
BERNARDEAU, F ;
KOFMAN, L .
ASTROPHYSICAL JOURNAL, 1995, 443 (02) :479-498
[10]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248