Helicene-SPP-Based Chiral Plasmonic Hybrid Structure: Toward Direct Enantiomers SERS Discrimination

被引:63
作者
Kalachyova, Yevgeniya [1 ,3 ]
Guselnikova, Olga [1 ]
Elashnikov, Roman [1 ]
Panov, Illia [4 ]
Zadny, Jaroslav [4 ]
Cirkva, Vladimir [4 ]
Storch, Jan [4 ]
Sykora, Jan [4 ]
Zaruba, Kamil [2 ]
Svorcik, Vaclav [1 ]
Lyutakov, Oleksiy [1 ]
机构
[1] Univ Chem & Technol, Tech 5, Dept Solid State Engn, Prague 16628, Czech Republic
[2] Univ Chem & Technol, Dept Analyt Chem, Tech 5, Prague 16628, Czech Republic
[3] Tomsk Polytech Univ, Res Sch Chem & Appl Biomed Sci, Lenina Avn 30, Tomsk 634050, Russia
[4] Czech Acad Sci, Inst Chem Proc Fundamentals, Grp Adv Mat & Organ Synth, Rozvojova 135, Prague 16502, Czech Republic
关键词
circular plasmon; helicene; surface plasmon-polariton; chiral SERS; enantiomers recognition; RAMAN OPTICAL-ACTIVITY; CIRCULAR-DICHROISM; NANOPARTICLES; METAMATERIAL; SEPARATION; MOLECULES; PLATFORM; NANOROD; ORIGIN; SCALE;
D O I
10.1021/acsami.8b15520
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Achieving chiral plasmon response based on the combination of achiral plasmonic nanostructures with highly chiral surrounding medium represents an attractive way for creation of hybrid optically active plasmonic materials. In this work, we present an attractive design and fabrication of chiral plasmon substrates based on a surface plasmon-polariton-supported structure coupled with extremely optically active helicene enantiomers. Such approach allows us to excite chiral plasmon waves and to design optically active surface enhanced Raman spectroscopy substrates. Its further combination with standard Raman spectroscopy makes possible enantioselective detection/recognition of optical enantiomers with detection limits below those of standard spectral techniques. The chiral optical response of new plasmonic system was observed and controlled by the optical rotation of helicenes. Without necessity of previous chiral separation or implementation of sophisticated experimental equipment, we were able to estimate the concentration of enantiomers in their mixture by using left- or right-handed chiral plasmon substrates.
引用
收藏
页码:1555 / 1562
页数:8
相关论文
共 65 条
[1]   Surface enhanced Raman optical activity (SEROA) [J].
Abdali, Salim ;
Blanch, Ewan William .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) :980-992
[2]   Observation of SERS effect in Raman optical activity, a new tool for chiral vibrational spectroscopy [J].
Abdali, Salim .
JOURNAL OF RAMAN SPECTROSCOPY, 2006, 37 (12) :1341-1345
[3]   Induced Chirality through Electromagnetic Coupling between Chiral Molecular Layers and Plasmonic Nanostructures [J].
Abdulrahman, Nadia A. ;
Fan, Z. ;
Tonooka, Taishi ;
Kelly, Sharon M. ;
Gadegaard, Nikolaj ;
Hendry, Euan ;
Govorov, Alexander O. ;
Kadodwala, Malcolm .
NANO LETTERS, 2012, 12 (02) :977-983
[4]  
Berova N., 2000, Circular Dichroism: Principles and Applications
[5]   Probing chiral interfaces by infrared spectroscopic methods [J].
Bieri, Marco ;
Gautier, Cyrille ;
Burgi, Thomas .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (06) :671-685
[6]   Chiral Shell Core-Satellite Nanostructures for Ultrasensitive Detection of Mycotoxin [J].
Cai, Jiarong ;
Hao, Changlong ;
Sun, Maozhong ;
Ma, Wei ;
Xu, Chuanlai ;
Kuang, Hua .
SMALL, 2018, 14 (13)
[7]   Chiroplasmonic DNA-based nanostructures [J].
Cecconello, Alessandro ;
Besteiro, Lucas V. ;
Govorov, Alexander O. ;
Willner, Itamar .
NATURE REVIEWS MATERIALS, 2017, 2 (09)
[8]   Nanoimprint lithography for planar chiral photonic meta-materials [J].
Chen, YF ;
Tao, JR ;
Zhao, XZ ;
Cui, Z ;
Schwanecke, AS ;
Zheludev, NI .
MICROELECTRONIC ENGINEERING, 2005, 78-79 :612-617
[9]   Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends [J].
Collins, Joel T. ;
Kuppe, Christian ;
Hooper, David C. ;
Sibilia, Concita ;
Centini, Marco ;
Valev, Ventsislav K. .
ADVANCED OPTICAL MATERIALS, 2017, 5 (16)
[10]   Tailorable chiroptical activity of metallic nanospiral arrays [J].
Deng, Junhong ;
Fu, Junxue ;
Ng, Jack ;
Huang, Zhifeng .
NANOSCALE, 2016, 8 (08) :4504-4510