Phenotyping for drought resistance in bread wheat using physiological and biochemical traits

被引:80
作者
Ahmed, Kashif [1 ]
Shabbir, Ghulam [1 ]
Ahmed, Mukhtar [2 ,3 ]
Shah, Kausar Nawaz [1 ]
机构
[1] Pir Mehr Ali Shah Arid Agr Univ, Dept Plant Breeding & Genet, Rawalpindi 46300, Pakistan
[2] Swedish Univ Agr Sci, Dept Agr Res Northern Sweden, S-90183 Umea, Sweden
[3] Pir Mehr Ali Shah Arid Agr Univ, Dept Agron, Rawalpindi 46300, Pakistan
关键词
Drought; Wheat; Physio-biochemical traits; Stress tolerance index; Heatmap'; Correlation coefficient; TRITICUM-AESTIVUM-L; OSMOTIC ADJUSTMENT; CANOPY TEMPERATURE; WATER RELATIONS; CLIMATE-CHANGE; GROWTH-STAGES; DECIMAL CODE; STRESS; TOLERANCE; YIELD;
D O I
10.1016/j.scitotenv.2020.139082
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drought is one of the most prominent limiting factors that negatively affect crop productivity by manipulating its physiological pathway. One hundred twenty diverse bread wheat genotypes were used in a pot experiment to explore the relationship among their fifteen physio-biochemical traits (PBT) by using multivariate analysis, heatmapping and stress tolerance index (STI) for grain yield as a marker trait to identify high yielding genotype with maximum stress tolerance capability. Increased proline and sugar accumulation were observed from control to moisture deficient environments by 159% and 122%, respectively. Moreover, leaf membrane stability index (LMSI), leaf relative water content (LRWC), relative dry weight (RDW), chlorophyll content, leaf surface area (LSA), Leaf succulence (LS), canopy temperature depression (CTD), relative excised leaf water loss (RELWL) and leaf osmotic potential (LOP) showed significantly decreasing trend in drought stress treatment as compared to well-watered plants by-21%,-21%,-34%,-22%,-38%,-37%,-46%,-18% and -35% respectively. Additionally, principal component analysis and genotype by trait biplot analysis showed that initial 7 principal components (PC1 to PC7) represented 77.27% and 79.02% of total cumulative variation under control and drought stress respectively. Genotypic-Phenotypic correlation revealed that most of the attributes were higher in case of genotypic correlation component (rg) as compared to the phenotypic correlation component (rp) indicating more genetic association between traits. The darker and lighter colour scale produced by heatmap exhibited contrasting nature of genotypes, as positive side with higher values represented drought resistance while values on the negative side with lower values showed susceptible performance of genotypes. Our results concluded that the studied PBT associated with STI for grain yield are the main factors which may contribute in improved productivity of wheat crop and if these traits show appropriate performance under stress condition the crop will show the more productive returns under changing climate. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 81 条
[1]   Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars [J].
Abid, Muhammad ;
Tian, Zhongwei ;
Ata-Ul-Karim, Syed Tahir ;
Liu, Yang ;
Cui, Yakun ;
Zahoor, Rizwan ;
Jiang, Dong ;
Dai, Tingbo .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 106 :218-227
[2]   Selection Criteria for Drought-Tolerant Bread Wheat Genotypes at Seedling Stage [J].
Ahmed, Hafiz Ghulam Muhu-Din ;
Sajjad, Muhammad ;
Li, Mingju ;
Azmat, Muhammad Abubakkar ;
Rizwan, Muhammad ;
Maqsood, Rana Haroon ;
Khan, Sultan Habibullah .
SUSTAINABILITY, 2019, 11 (09)
[3]   Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of Pakistan [J].
Ahmed, Kamal ;
Shahid, Shamsuddin ;
Chung, Eun-Sung ;
Wang, Xiao-jun ;
Bin Harun, Sobri .
JOURNAL OF HYDROLOGY, 2019, 570 :473-485
[4]  
Ahmed M., 2012, Australian Journal of Crop Science, V6, P749
[5]  
Ahmed M, 2019, PAK J BOT, V51, P535, DOI [10.30848/PJB2019-2(10), 10.30848/pjb2019-2(10)]
[6]   Response of proline accumulation in bread wheat (Triticum aestivum L.) under rainfed conditions [J].
Ahmed, Mukhtar ;
Fayyaz-ul-Hassan ;
Qadir, Ghulam ;
Shaheen, Farid Asif ;
Aslam, Muhammad Aqeel .
JOURNAL OF AGRICULTURAL METEOROLOGY, 2017, 73 (04) :147-155
[7]  
Ahmed M, 2012, INT J AGRIC BIOL, V14, P407
[8]   Phenotypic and molecular variation in drought tolerance of Jordanian durum wheat (Triticum durum Desf.) landraces [J].
Al Khateeb, Wesam ;
Al Shalabi, Ala'a ;
Schroeder, Dana ;
Musallam, Iyad .
PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2017, 23 (02) :311-319
[9]  
Ali MA, 2009, INT J AGRIC BIOL, V11, P44
[10]   SOYBEAN DRY-MATTER ALLOCATION UNDER SUBAMBIENT AND SUPERAMBIENT LEVELS OF CARBON-DIOXIDE [J].
ALLEN, LH ;
BISBAL, EC ;
BOOTE, KJ ;
JONES, PH .
AGRONOMY JOURNAL, 1991, 83 (05) :875-883