Geometric stiffening of Timoshenko beams

被引:8
|
作者
Oguamanam, DCD [1 ]
Heppler, GR
机构
[1] Univ Waterloo, Dept Mech Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 1998年 / 65卷 / 04期
关键词
D O I
10.1115/1.2791936
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The equations of motion of a prismatic isotropic Timoshenko beam with a tip mass and attached to a rotating hub are derived including the effects of centrifugal forces which appear in the equations of motion as nonlinear functions of the angular speed. The Rayleigh-Ritz method is used to obtain approximate solutions for the cases of a prescribed torque profile and a prescribed hub angular speed profile. In the case of a constant torque input, the effect of the centrifugal forces is not observed until sufficient angular speed is reached. When the system is driven under a constant velocity, it is observed that, for a sufficiently high angular speed, the centrifugal forces reduce the vibration amplitude.
引用
收藏
页码:923 / 929
页数:7
相关论文
共 50 条
  • [1] Vibration of rotating Timoshenko beams with centrifugal stiffening and specified torque or velocity profiles
    Oguamanam, DCD
    Heppler, GR
    DYNAMICS AND CONTROL OF STRUCTURES IN SPACE III, 1996, : 135 - 150
  • [2] TIMOSHENKO BEAMS
    DYRBYE, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (06): : T142 - T143
  • [3] Comparing nonlinear free vibrations of Timoshenko beams with mechanical or geometric curvature definition
    Lenci, Stefano
    Clementi, Francesco
    Rega, Giuseppe
    24TH INTERNATIONAL CONGRESS OF THEORETICAL AND APPLIED MECHANICS - FOUNDATION OF MULTIDISCIPLINARY RESEARCH, 2017, 20 : 34 - 41
  • [4] Cross-section deformation, geometric stiffening, and locking in the nonlinear vibration analysis of beams
    Eldeeb, Ahmed E.
    Zhang, Dayu
    Shabana, Ahmed A.
    NONLINEAR DYNAMICS, 2022, 108 (02) : 1425 - 1445
  • [5] Cross-section deformation, geometric stiffening, and locking in the nonlinear vibration analysis of beams
    Ahmed E. Eldeeb
    Dayu Zhang
    Ahmed A. Shabana
    Nonlinear Dynamics, 2022, 108 : 1425 - 1445
  • [6] Dynamics of Laminated Timoshenko Beams
    Feng, B.
    Ma, T. F.
    Monteiro, R. N.
    Raposo, C. A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (04) : 1489 - 1507
  • [7] On damping effects in Timoshenko beams
    Capsoni, Antonio
    Vigano, Giovanni Maria
    Bani-Hani, Khaldoon
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 73 : 27 - 39
  • [8] A Screw Theory of Timoshenko Beams
    Selig, J. M.
    Ding, Xilun
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2009, 76 (03): : 1 - 7
  • [9] Vibration of nonlocal Timoshenko beams
    Wang, C. M.
    Zhang, Y. Y.
    He, X. Q.
    NANOTECHNOLOGY, 2007, 18 (10)
  • [10] Dynamics of Laminated Timoshenko Beams
    B. Feng
    T. F. Ma
    R. N. Monteiro
    C. A. Raposo
    Journal of Dynamics and Differential Equations, 2018, 30 : 1489 - 1507