Burning in the Tail: Implications for a Burst Oscillation Model

被引:13
作者
Chambers, Frank R. N. [1 ]
Watts, Anna L. [1 ]
Keek, Laurens [2 ]
Cavecchi, Yuri [3 ,4 ]
Garcia, Ferran [1 ,5 ]
机构
[1] Univ Amsterdam, Astron Inst Anton Pannekoek, Postbus 94249, NL-1090 GE Amsterdam, Netherlands
[2] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[3] Univ Southampton, Math Sci & STAG Res Ctr, Southampton SO17 1BJ, Hants, England
[4] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA
[5] Helmholtz Zentrum Dresden Rossendorf, Dept Magnetohydrodynam, POB 51 01 19, D-01314 Dresden, Germany
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
stars: neutron; stars: oscillations; X-rays: binaries; X-rays: bursts; X-RAY-BURSTS; THERMONUCLEAR BURSTS; NEUTRON-STARS; RP-PROCESS; EVOLUTION; FREQUENCY; OCEAN; CRUST; WAVE;
D O I
10.3847/1538-4357/aaf501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Accreting neutron stars (NSs) can exhibit high-frequency modulations, known as burst oscillations, in their light curves during thermonuclear X-ray bursts. Their frequencies can be offset from the spin frequency of the NS (known independently) by several Hz, and can drift by 1-3 Hz. One plausible explanation for this phenomenon is that a wave is present in the bursting ocean that decreases in frequency (in the rotating frame) as the burst cools. The strongest candidate is the buoyant r-mode; however, models for the burning ocean background used in previous studies over-predict frequency drifts by several Hz. Using new background models (which include shallow heating, and burning in the tail of the burst) the evolution of the buoyant r-mode is calculated. The resulting frequency drifts are smaller, in line with observations. This illustrates the importance of accounting for the detailed nuclear physics in these bursts.
引用
收藏
页数:5
相关论文
共 44 条
[1]   Type I X-ray bursts and burst oscillations in the accreting millisecond X-ray pulsar IGR J17511-3057 [J].
Altamirano, D. ;
Watts, A. ;
Linares, M. ;
Markwardt, C. B. ;
Strohmayer, T. ;
Patruno, A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 409 (03) :1136-1145
[2]  
[Anonymous], 2017, ARXIV171206227
[3]   Evolution of the bursting-layer wave during a type I X-ray burst [J].
Berkhout, R. G. ;
Levin, Yuri .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 385 (02) :1029-1035
[4]   MAPPING CRUSTAL HEATING WITH THE COOLING LIGHT CURVES OF QUASI-PERSISTENT TRANSIENTS [J].
Brown, Edward F. ;
Cumming, Andrew .
ASTROPHYSICAL JOURNAL, 2009, 698 (02) :1020-1032
[5]   Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars [J].
Chakrabarty, D ;
Morgan, EH ;
Muno, MP ;
Galloway, DK ;
Wijnands, R ;
van der Klis, M ;
Markwardt, CB .
NATURE, 2003, 424 (6944) :42-44
[6]   Superburst oscillations: ocean and crustal modes excited by carbon-triggered type I X-ray bursts [J].
Chambers, F. R. N. ;
Watts, A. L. ;
Cavecchi, Y. ;
Garcia, F. ;
Keek, L. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (04) :4391-4402
[7]   Physics of Neutron Star Crusts [J].
Chamel, Nicolas ;
Haensel, Pawel .
LIVING REVIEWS IN RELATIVITY, 2008, 11 (1)
[8]   Rotational evolution during Type I X-ray bursts [J].
Cumming, A ;
Bildsten, L .
ASTROPHYSICAL JOURNAL, 2000, 544 (01) :453-474
[9]   Long type I X-ray bursts and neutron star interior physics [J].
Cumming, Andrew ;
Macbeth, Jared ;
Zand, J. J. M. In't ;
Page, Dany .
ASTROPHYSICAL JOURNAL, 2006, 646 (01) :429-451
[10]   DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES [J].
Cyburt, R. H. ;
Amthor, A. M. ;
Heger, A. ;
Johnson, E. ;
Keek, L. ;
Meisel, Z. ;
Schatz, H. ;
Smith, K. .
ASTROPHYSICAL JOURNAL, 2016, 830 (02)