Second-order damped functional stochastic evolution equations in Hilbert space

被引:0
|
作者
McKibben, MA [1 ]
机构
[1] Goucher Coll, Dept Math & Comp Sci, Baltimore, MD 21204 USA
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2003年 / 12卷 / 3-4期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a class of abstract second-order functional stochastic evolution equations with damping in a real separable Hilbert space. The global existence of mad solutions is established under various growth and compactness conditions. Also, a related convergence result and an example illustrating the abstract theory are discussed.
引用
收藏
页码:467 / 487
页数:21
相关论文
共 50 条
  • [1] Abstract second-order damped McKean-Vlasov stochastic evolution equations
    Mahmudov, NI
    McKibben, MA
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2006, 24 (02) : 303 - 328
  • [2] Abstract functional second-order stochastic evolution equations with applications
    McKibben M.A.
    Webster M.
    Afrika Matematika, 2017, 28 (5-6) : 755 - 780
  • [3] Approximate controllability of second-order damped McKean-Vlasov stochastic evolution equations
    Muthukumar, P.
    Balasubramaniam, P.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (10) : 2788 - 2796
  • [4] Explicit and approximate solutions of second-order evolution differential equations in Hilbert space
    Gavrilyuk, IP
    Makarov, VL
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1999, 15 (01) : 111 - 131
  • [5] Perturbed Second-Order Stochastic Evolution Equations
    Lijuan Cheng
    Yong Ren
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [6] Perturbed Second-Order Stochastic Evolution Equations
    Cheng, Lijuan
    Ren, Yong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)
  • [7] Controllability of Second-Order Semilinear Impulsive Stochastic Neutral Functional Evolution Equations
    Zhang, Lei
    Ding, Yongsheng
    Wang, Tong
    Hu, Liangjian
    Hao, Kuangrong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [8] RESOLVABILITY OF A CLASS OF DIFFERENTIAL EQUATIONS OF SECOND-ORDER IN HILBERT SPACE
    GAJEWSKI, H
    GROGER, K
    MATHEMATISCHE NACHRICHTEN, 1973, 56 (1-6) : 111 - 124
  • [9] Oscillation of second-order damped differential equations
    Xiaoling Fu
    Tongxing Li
    Chenghui Zhang
    Advances in Difference Equations, 2013
  • [10] Oscillation of second-order damped differential equations
    Fu, Xiaoling
    Li, Tongxing
    Zhang, Chenghui
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,