Cell subset prediction for blood genomic studies

被引:52
作者
Bolen, Christopher R. [1 ]
Uduman, Mohamed [1 ]
Kleinstein, Steven H. [1 ,2 ]
机构
[1] Yale Univ, Interdept Program Computat Biol & Bioinformat, New Haven, CT 06511 USA
[2] Yale Univ, Dept Pathol, Sch Med, New Haven, CT 06511 USA
关键词
ALTERS GENE-EXPRESSION; PERIPHERAL-BLOOD; MONONUCLEAR-CELLS; BRIEF BOUT; INTERFERON; LEUKOCYTES; PATTERNS; THERAPY; BIOLOGY; ONSET;
D O I
10.1186/1471-2105-12-258
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Genome-wide transcriptional profiling of patient blood samples offers a powerful tool to investigate underlying disease mechanisms and personalized treatment decisions. Most studies are based on analysis of total peripheral blood mononuclear cells (PBMCs), a mixed population. In this case, accuracy is inherently limited since cell subset-specific differential expression of gene signatures will be diluted by RNA from other cells. While using specific PBMC subsets for transcriptional profiling would improve our ability to extract knowledge from these data, it is rarely obvious which cell subset(s) will be the most informative. Results: We have developed a computational method (Subset Prediction from Enrichment Correlation, SPEC) to predict the cellular source for a pre-defined list of genes (i.e. a gene signature) using only data from total PBMCs. SPEC does not rely on the occurrence of cell subset-specific genes in the signature, but rather takes advantage of correlations with subset-specific genes across a set of samples. Validation using multiple experimental datasets demonstrates that SPEC can accurately identify the source of a gene signature as myeloid or lymphoid, as well as differentiate between B cells, T cells, NK cells and monocytes. Using SPEC, we predict that myeloid cells are the source of the interferon-therapy response gene signature associated with HCV patients who are non-responsive to standard therapy. Conclusions: SPEC is a powerful technique for blood genomic studies. It can help identify specific cell subsets that are important for understanding disease and therapy response. SPEC is widely applicable since only gene expression profiles from total PBMCs are required, and thus it can easily be used to mine the massive amount of existing microarray or RNA-seq data.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus [J].
Abbas, Alexander R. ;
Wolslegel, Kristen ;
Seshasayee, Dhaya ;
Modrusan, Zora ;
Clark, Hilary F. .
PLOS ONE, 2009, 4 (07)
[2]   Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data [J].
Abbas, AR ;
Baldwin, D ;
Ma, Y ;
Ouyang, W ;
Gurney, A ;
Martin, F ;
Fong, S ;
Campagne, MV ;
Godowski, P ;
Williams, PM ;
Chan, AC ;
Clark, HF .
GENES AND IMMUNITY, 2005, 6 (04) :319-331
[3]  
ASSELAH T, 2009, GENE EXPRESSION HEPA
[4]  
AUTISSIER P, CYTOMETRY A, V77, P410
[5]   An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis [J].
Berry, Matthew P. R. ;
Graham, Christine M. ;
McNab, Finlay W. ;
Xu, Zhaohui ;
Bloch, Susannah A. A. ;
Oni, Tolu ;
Wilkinson, Katalin A. ;
Banchereau, Romain ;
Skinner, Jason ;
Wilkinson, Robert J. ;
Quinn, Charles ;
Blankenship, Derek ;
Dhawan, Ranju ;
Cush, John J. ;
Mejias, Asuncion ;
Ramilo, Octavio ;
Kon, Onn M. ;
Pascual, Virginia ;
Banchereau, Jacques ;
Chaussabel, Damien ;
O'Garra, Anne .
NATURE, 2010, 466 (7309) :973-U98
[6]   A modular analysis framework for blood genomics studies: Application to systemic lupus erythematosus [J].
Chaussabel, Damien ;
Quinn, Charles ;
Shen, Jing ;
Patel, Pinakeen ;
Glaser, Casey ;
Baldwin, Nicole ;
Stichweh, Dorothee ;
Blankenship, Derek ;
Li, Lei ;
Munagala, Indira ;
Bennett, Lynda ;
Allantaz, Florence ;
Mejias, Asuncion ;
Ardura, Monica ;
Kaizer, Ellen ;
Monnet, Laurence ;
Allman, Windy ;
Randall, Henry ;
Johnson, Diane ;
Lanier, Aimee ;
Punaro, Marilynn ;
Wittkowski, Knut M. ;
White, Perrin ;
Fay, Joseph ;
Klintmalm, Goran ;
Ramilo, Octavio ;
Palucka, A. Karolina ;
Banchereau, Jacques ;
Pascual, Virginia .
IMMUNITY, 2008, 29 (01) :150-164
[7]   Statistical expression deconvolution from mixed tissue samples [J].
Clarke, Jennifer ;
Seo, Pearl ;
Clarke, Bertrand .
BIOINFORMATICS, 2010, 26 (08) :1043-1049
[8]   Probabilistic analysis of gene expression measurements from heterogeneous tissues [J].
Erkkila, Timo ;
Lehmusvaara, Saara ;
Ruusuvuori, Pekka ;
Visakorpi, Tapio ;
Shmulevich, Ilya ;
Lahdesmaki, Harri .
BIOINFORMATICS, 2010, 26 (20) :2571-2577
[9]   Gene expression profiling of peripheral blood from patients with untreated new-onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome [J].
Fall, Ndate ;
Barnes, Michael ;
Thornton, Sherry ;
Luyrink, Lorie ;
Olson, Judyann ;
Ilowite, Norman T. ;
Gottlieb, Beth S. ;
Griffin, Thomas ;
Sherry, David D. ;
Thompson, Susan ;
Glass, David N. ;
Colbert, Robert A. ;
Grom, Alexei A. .
ARTHRITIS AND RHEUMATISM, 2007, 56 (11) :3793-3804
[10]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)