Non-equilibrium thermal transport and entropy analyses in rarefied cavity flows

被引:14
|
作者
Venugopal, Vishnu [1 ]
Praturi, Divya Sri [1 ]
Girimaji, Sharath S. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Ocean Engn, College Stn, TX 77843 USA
关键词
kinetic theory; GAS-KINETIC SCHEME; BGK SCHEME; LATTICE BOLTZMANN; NAVIER-STOKES; CONTINUUM; TRANSITION; EQUATIONS;
D O I
10.1017/jfm.2018.1028
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Thermal transport in rarefied flows far removed from thermodynamic equilibrium is investigated using kinetic-theory-based numerical simulations. Two numerical schemes -unified gas kinetic scheme (UGKS) and direct simulation Monte Carlo (DSMC) are employed to simulate transport at different degrees of rarefaction. Lid-driven cavity flow simulations of argon gas are performed over a range of Knudsen numbers, Mach numbers and cavity shapes. Thermal transport is then characterized as a function of lid Mach number and Knudsen number for different cavity shapes. Vast deviations from the Fourier law-including thermal transport aligned along the direction of temperature gradient-are observed. Entropy implications are examined using Sackur-Tetrode and Boltzmann H-theorem formulations. At low Knudsen and Mach numbers, thermal transport is shown to be amenable to both entropy formulations. However, beyond moderate Knudsen and Mach numbers, thermal transport complies only with the Boltzmann H-theorem entropy statement. Two extended thermodynamic models are compared against simulation data and found to account for some of the observed non-equilibrium behaviour.
引用
收藏
页码:995 / 1025
页数:31
相关论文
共 50 条
  • [1] Entropy considerations in numerical simulations of non-equilibrium rarefied flows
    Chigullapalli, S.
    Venkattraman, A.
    Ivanov, M. S.
    Alexeenko, A. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) : 2139 - 2158
  • [2] Analytical method of nonlinear coupled constitutive relations for rarefied non-equilibrium flows
    HE, Zhiqiang
    JIANG, Zhongzheng
    ZHANG, Huangwei
    CHEN, Weifang
    CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (02) : 136 - 153
  • [3] An Investigation of Uncertainty Propagation in Non-equilibrium Flows
    Xiao, Tianbai
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2022, 36 (04) : 294 - 318
  • [4] Enhancement of diffusive transport by non-equilibrium thermal fluctuations
    Donev, Aleksandar
    Bell, John B.
    de la Fuente, Anton
    Garcia, Alejandro L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [5] Discrete Boltzmann modeling of high-speed compressible flows with various depths of non-equilibrium
    Zhang, Dejia
    Xu, Aiguo
    Zhang, Yudong
    Gan, Yanbiao
    Li, Yingjun
    PHYSICS OF FLUIDS, 2022, 34 (08)
  • [6] Progress of the unified wave-particle methods for non-equilibrium flows from continuum to rarefied regimes
    Liu, Sha
    Xu, Kun
    Zhong, Chengwen
    ACTA MECHANICA SINICA, 2022, 38 (06)
  • [7] Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows
    Meng, Jianping
    Zhang, Yonghao
    Hadjiconstantinou, Nicolas G.
    Radtke, Gregg A.
    Shan, Xiaowen
    JOURNAL OF FLUID MECHANICS, 2013, 718 : 347 - 370
  • [8] Entropy and Non-Equilibrium Statistical Mechanics
    Kovacs, Robert
    Scarfone, Antonio M.
    Abe, Sumiyoshi
    ENTROPY, 2020, 22 (05)
  • [9] Moment Method and Non-Equilibrium Thermodynamics of Rarefied Gas Mixture
    Zhdanov, Vladimir M.
    Roldughin, Vjacheslav I.
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 43 - 52
  • [10] Analysis of the Moment Method and the Discrete Velocity Method in Modeling Non-Equilibrium Rarefied Gas Flows: A Comparative Study
    Yang, Weiqi
    Tang, Shuo
    Yang, Hui
    APPLIED SCIENCES-BASEL, 2019, 9 (13):