Hall algebras in the derived category and higher-rank DT invariants

被引:12
作者
Toda, Yukinobu [1 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
来源
ALGEBRAIC GEOMETRY | 2020年 / 7卷 / 03期
关键词
Donaldson- Thomas invariants; Hall algebras; derived category; BRIDGELAND STABILITY CONDITIONS; ABELIAN CATEGORIES; HILBERT SCHEMES; STABLE OBJECTS; CONFIGURATIONS; THREEFOLDS; THEOREM; MODULI;
D O I
10.14231/AG-2020-008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We remark that the combination of the works of Ben-Bassat-Brav-Bussi-Joyce and Alper-Hall-Rydh imply the conjectured local description of the moduli stacks of semiSchur objects in the derived category of coherent sheaves on projective Calabi-Yau 3-folds. This result was assumed in the author's previous papers to apply wall-crossing formulas of DT-type invariants in the derived category, for example DT/PT correspondence, rationality, etc. We also show that the above result can be applied to prove the higher-rank version of the DT/PT correspondence and rationality.
引用
收藏
页码:240 / 262
页数:23
相关论文
共 49 条
[1]  
Alper J., 2015, ARXIV150406467
[2]  
[Anonymous], 2008, ARXIV08112435
[3]  
Bayer A, 2014, J ALGEBRAIC GEOM, V23, P117
[4]   Polynomial Bridgeland stability conditions and the large volume limit [J].
Bayer, Arend .
GEOMETRY & TOPOLOGY, 2009, 13 :2389-2425
[5]  
Beentjes S. V., 2018, ARXIV181006581
[6]   Donaldson-Thomas type invariants via microlocal geometry [J].
Behrend, Kai .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1307-1338
[7]   Symmetric obstruction theories and Hilbert schemes of points on threefolds [J].
Behrend, Kai ;
Fantechi, Barbara .
ALGEBRA & NUMBER THEORY, 2008, 2 (03) :313-345
[8]   A 'Darboux theorem' for shifted symplectic structures on derived Artin stacks, with applications [J].
Ben-Bassat, Oren ;
Brav, Christopher ;
Bussi, Vittoria ;
Joyce, Dominic .
GEOMETRY & TOPOLOGY, 2015, 19 (03) :1287-1359
[9]  
Bogomolov Y., 2013, J TOPOL, V6, P217, DOI [10.1112/jtopol/jts037, DOI 10.1112/JTOPOL/JTS037]
[10]   Stability conditions on triangulated categories [J].
Bridgeland, Tom .
ANNALS OF MATHEMATICS, 2007, 166 (02) :317-345