Probabilistic values on convex geometries

被引:4
|
作者
Bilbao, JM
Lebrón, E
Jiménez, N
机构
[1] Univ Sevilla, Escuela Super Ingn, E-41092 Seville, Spain
[2] Univ Sevilla, EU Politecn, E-41011 Seville, Spain
关键词
probabilistic value; Shapley value; convex geometry;
D O I
10.1023/A:1018953323577
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A game on a convex geometry is a real-valued function defined on the family L of the closed sets of a closure operator which satisfies the finite Minkowski-Krein-Milman property. If L is the Boolean algebra 2(N), then we obtain an n-person cooperative game. We will extend the work of Weber on probabilistic values to games on convex geometries. As a result, we obtain a family of axioms that give rise to several probabilistic values and a unique Shapley value for games on convex geometries.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 50 条