Probabilistic values on convex geometries

被引:4
作者
Bilbao, JM
Lebrón, E
Jiménez, N
机构
[1] Univ Sevilla, Escuela Super Ingn, E-41092 Seville, Spain
[2] Univ Sevilla, EU Politecn, E-41011 Seville, Spain
关键词
probabilistic value; Shapley value; convex geometry;
D O I
10.1023/A:1018953323577
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A game on a convex geometry is a real-valued function defined on the family L of the closed sets of a closure operator which satisfies the finite Minkowski-Krein-Milman property. If L is the Boolean algebra 2(N), then we obtain an n-person cooperative game. We will extend the work of Weber on probabilistic values to games on convex geometries. As a result, we obtain a family of axioms that give rise to several probabilistic values and a unique Shapley value for games on convex geometries.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 14 条
[1]  
BILBAO JM, 1997, SHAPLEY VALUE CONVEX
[2]   ON THE POSITION VALUE FOR COMMUNICATION SITUATIONS [J].
BORM, P ;
OWEN, G ;
TIJS, S .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (03) :305-320
[3]  
Edelman P.H., 1985, GEOM DEDICATA, V19, P247, DOI [10.1007/BF00149365, DOI 10.1007/BF00149365]
[4]  
EDELMAN PH, 1988, ORDER, V5, P23
[5]   A note on voting [J].
Edelman, PH .
MATHEMATICAL SOCIAL SCIENCES, 1997, 34 (01) :37-50
[6]   THE SHAPLEY VALUE FOR COOPERATIVE GAMES UNDER PRECEDENCE CONSTRAINTS [J].
FAIGLE, U ;
KERN, W .
INTERNATIONAL JOURNAL OF GAME THEORY, 1992, 21 (03) :249-266
[7]  
FAIGLE U, 1995, PARTITION GAMES CORE
[8]  
MOULIN H, 1996, UNPUB INCREMENTAL CO
[9]  
Myerson R. B., 1980, International Journal of Game Theory, V9, P169, DOI 10.1007/BF01781371
[10]  
Myerson R. B., 1977, Mathematics of Operations Research, V2, P225, DOI 10.1287/moor.2.3.225