Probabilistic values on convex geometries

被引:4
|
作者
Bilbao, JM
Lebrón, E
Jiménez, N
机构
[1] Univ Sevilla, Escuela Super Ingn, E-41092 Seville, Spain
[2] Univ Sevilla, EU Politecn, E-41011 Seville, Spain
关键词
probabilistic value; Shapley value; convex geometry;
D O I
10.1023/A:1018953323577
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A game on a convex geometry is a real-valued function defined on the family L of the closed sets of a closure operator which satisfies the finite Minkowski-Krein-Milman property. If L is the Boolean algebra 2(N), then we obtain an n-person cooperative game. We will extend the work of Weber on probabilistic values to games on convex geometries. As a result, we obtain a family of axioms that give rise to several probabilistic values and a unique Shapley value for games on convex geometries.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 50 条
  • [1] Probabilistic values on convex geometries
    J.M. Bilbao
    E. Lebrón
    N. Jiménez
    Annals of Operations Research, 1998, 84 : 79 - 95
  • [2] Proportional coalition values for monotonic games on convex geometries with a coalition structure
    Meng, Fanyong
    Tang, Jie
    Ma, Beiling
    Zhang, Qiang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 34 - 47
  • [3] On Scattered Convex Geometries
    Adaricheva, Kira
    Pouzet, Maurice
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2017, 34 (03): : 523 - 550
  • [4] Geometry of Convex Geometries
    Chalopin, Jeremie
    Chepoi, Victor
    Knauer, Kolja
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025,
  • [5] Resolutions of Convex Geometries
    Cantone, Domenico
    Doignon, Jean-Paul
    Giarlotta, Alfio
    Watson, Stephen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04): : 1 - 39
  • [6] On Scattered Convex Geometries
    Kira Adaricheva
    Maurice Pouzet
    Order, 2017, 34 : 523 - 550
  • [7] Resolutions of convex geometries
    Cantone, Domenico
    Doignon, Jean-Paul
    Giarlotta, Alfio
    Watson, Stephen
    arXiv, 2021,
  • [8] Metrics for Probabilistic Geometries
    Tosi, Alessandra
    Hauberg, Soren
    Vellido, Alfredo
    Lawrence, Neil D.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 800 - 808
  • [9] COMBINATORIAL REPRESENTATION AND CONVEX DIMENSION OF CONVEX GEOMETRIES
    EDELMAN, PH
    SAKS, ME
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1988, 5 (01): : 23 - 32
  • [10] Convex dimension of locally planar convex geometries
    Morris, WD
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (01) : 85 - 101