Do-it-yourself networks: a novel method of generating weighted networks

被引:6
|
作者
Shanafelt, D. W. [1 ,2 ]
Salau, K. R. [3 ]
Baggio, J. A. [4 ]
机构
[1] CNRS, Ctr Biodivers Theory & Modelling, Theoret & Expt Ecol Stn, F-09200 Moulis, France
[2] Paul Sabatier Univ, F-09200 Moulis, France
[3] Univ Arizona, Dept Math, 617 North Santa Rita Ave, Tucson, AZ 85721 USA
[4] Utah State Univ, Dept Environm & Soc, 5215 Old Main Hill, Logan, UT 84322 USA
来源
ROYAL SOCIETY OPEN SCIENCE | 2017年 / 4卷 / 11期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
adjacency matrix; network and graph theory; optimization; weighted network; LANDSCAPE CONNECTIVITY; DYNAMICS; HABITAT; MODEL; GRAPH; BIODIVERSITY; CENTRALITY; INSURANCE; STABILITY;
D O I
10.1098/rsos.171227
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Network theory is finding applications in the life and social sciences for ecology, epidemiology, finance and social-ecological systems. While there are methods to generate specific types of networks, the broad literature is focused on generating unweighted networks. In this paper, we present a framework for generating weighted networks that satisfy user- defined criteria. Each criterion hierarchically defines a feature of the network and, in doing so, complements existing algorithms in the literature. We use a general example of ecological species dispersal to illustrate the method and provide open- source code for academic purposes.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Evolving Model of Weighted Networks
    Geng, Xianmin
    Zhou, Hongwei
    Wen, Guanghui
    COMPLEX SCIENCES, PT 2, 2009, 5 : 1575 - +
  • [42] Adaptive rewiring in weighted networks
    Hellrigel, Stefan
    Jarman, Nicholas
    van Leeuwen, Cees
    COGNITIVE SYSTEMS RESEARCH, 2019, 55 : 205 - 218
  • [43] PWPROP: A Progressive Weighted Adaptive Method for Training Deep Neural Networks
    Wang, Dong
    Xu, Tao
    Zhang, Huatian
    Shang, Fanhua
    Liu, Hongying
    Liu, Yuanyuan
    Shen, Shengmei
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 508 - 515
  • [44] A dynamic weighted TOPSIS method for identifying influential nodes in complex networks
    Yang, Pingle
    Liu, Xin
    Xu, Guiqiong
    MODERN PHYSICS LETTERS B, 2018, 32 (19):
  • [45] Optimal weighted coefficient for heterogeneous epidemic spreading networks
    An, Xuming
    Ding, Li
    Hul, Ping
    Yu, Yi
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [46] Analysis of epidemic spreading with feedback mechanism in weighted networks
    Zhang, Jiancheng
    Sun, Jitao
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (01)
  • [47] Link prediction in weighted networks via motif predictor
    Li, Longjie
    Wen, Yanhong
    Bai, Shenshen
    Liu, Panfeng
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [48] Evolving weighted networks with edge weight dynamical growth
    Sun, Xuelian
    Feng, Enmin
    Liu, Jianguo
    Wang, Bing
    KYBERNETES, 2012, 41 (09) : 1244 - 1251
  • [49] Effects of accelerating growth on the evolution of weighted complex networks
    Zhang, Zhongzhi
    Fang, Lujun
    Zhou, Shuigeng
    Guan, Jihong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (2-3) : 225 - 232
  • [50] Weighted Scaling in Non-growth Random Networks
    Chen Guang
    Yang Xu-Hua
    Xu Xin-Li
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (03) : 456 - 462