Do-it-yourself networks: a novel method of generating weighted networks

被引:6
|
作者
Shanafelt, D. W. [1 ,2 ]
Salau, K. R. [3 ]
Baggio, J. A. [4 ]
机构
[1] CNRS, Ctr Biodivers Theory & Modelling, Theoret & Expt Ecol Stn, F-09200 Moulis, France
[2] Paul Sabatier Univ, F-09200 Moulis, France
[3] Univ Arizona, Dept Math, 617 North Santa Rita Ave, Tucson, AZ 85721 USA
[4] Utah State Univ, Dept Environm & Soc, 5215 Old Main Hill, Logan, UT 84322 USA
来源
ROYAL SOCIETY OPEN SCIENCE | 2017年 / 4卷 / 11期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
adjacency matrix; network and graph theory; optimization; weighted network; LANDSCAPE CONNECTIVITY; DYNAMICS; HABITAT; MODEL; GRAPH; BIODIVERSITY; CENTRALITY; INSURANCE; STABILITY;
D O I
10.1098/rsos.171227
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Network theory is finding applications in the life and social sciences for ecology, epidemiology, finance and social-ecological systems. While there are methods to generate specific types of networks, the broad literature is focused on generating unweighted networks. In this paper, we present a framework for generating weighted networks that satisfy user- defined criteria. Each criterion hierarchically defines a feature of the network and, in doing so, complements existing algorithms in the literature. We use a general example of ecological species dispersal to illustrate the method and provide open- source code for academic purposes.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Identifying Central Nodes in Directed and Weighted Networks
    Kaur, Sharanjit
    Gupta, Ayushi
    Saxena, Rakhi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (08) : 905 - 914
  • [32] Effect of distribution of weight on the efficiency of weighted networks
    Tian Liu
    Di Zeng-Ru
    Yao Hong
    ACTA PHYSICA SINICA, 2011, 60 (02)
  • [33] Designing weighted and directed networks under complementarities
    Li, Xueheng
    GAMES AND ECONOMIC BEHAVIOR, 2023, 140 : 556 - 574
  • [34] Generating Synthetic Systems of Interdependent Critical Infrastructure Networks
    Wang, Yu
    Yu, Jin-Zhu
    Baroud, Hiba
    IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 3191 - 3202
  • [35] A Novel Fault Detection Method Under Weighted Try-Once-Discard Scheduling Over Sensor Networks
    Ju, Yamei
    Wei, Guoliang
    Ding, Derui
    Liu, Shuai
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (03): : 1489 - 1499
  • [36] Local Representatives in Weighted Networks
    Zehnalova, Sarka
    Kudelka, Milos
    Platos, Jan
    Horak, Zdenek
    2014 PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2014), 2014, : 870 - 875
  • [37] Epidemic Spread on Weighted Networks
    Kamp, Christel
    Moslonka-Lefebvre, Mathieu
    Alizon, Samuel
    PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (12)
  • [38] Voter models on weighted networks
    Baronchelli, Andrea
    Castellano, Claudio
    Pastor-Satorras, Romualdo
    PHYSICAL REVIEW E, 2011, 83 (06):
  • [39] Clustering assessment in weighted networks
    Arratia A.
    Mirambell M.R.
    PeerJ Computer Science, 2021, 7 : 1 - 27
  • [40] Clustering assessment in weighted networks
    Arratia, Argimiro
    Mirambell, Marti Renedo
    PEERJ COMPUTER SCIENCE, 2021,