Do-it-yourself networks: a novel method of generating weighted networks

被引:6
|
作者
Shanafelt, D. W. [1 ,2 ]
Salau, K. R. [3 ]
Baggio, J. A. [4 ]
机构
[1] CNRS, Ctr Biodivers Theory & Modelling, Theoret & Expt Ecol Stn, F-09200 Moulis, France
[2] Paul Sabatier Univ, F-09200 Moulis, France
[3] Univ Arizona, Dept Math, 617 North Santa Rita Ave, Tucson, AZ 85721 USA
[4] Utah State Univ, Dept Environm & Soc, 5215 Old Main Hill, Logan, UT 84322 USA
来源
ROYAL SOCIETY OPEN SCIENCE | 2017年 / 4卷 / 11期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
adjacency matrix; network and graph theory; optimization; weighted network; LANDSCAPE CONNECTIVITY; DYNAMICS; HABITAT; MODEL; GRAPH; BIODIVERSITY; CENTRALITY; INSURANCE; STABILITY;
D O I
10.1098/rsos.171227
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Network theory is finding applications in the life and social sciences for ecology, epidemiology, finance and social-ecological systems. While there are methods to generate specific types of networks, the broad literature is focused on generating unweighted networks. In this paper, we present a framework for generating weighted networks that satisfy user- defined criteria. Each criterion hierarchically defines a feature of the network and, in doing so, complements existing algorithms in the literature. We use a general example of ecological species dispersal to illustrate the method and provide open- source code for academic purposes.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Motifs in weighted networks and their Hirsch subgraphs
    Li, Simon S.
    Rousseau, Ronald
    Ye, Fred Y.
    MALAYSIAN JOURNAL OF LIBRARY & INFORMATION SCIENCE, 2016, 21 (03) : 21 - 34
  • [22] Robustness in Weighted Networks with Cluster Structure
    Zheng, Yi
    Liu, Fang
    Gong, Yong-Wang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [23] Measurement of knowledge diffusion efficiency for the weighted knowledge collaboration networks
    Su, Jiafu
    Yang, Yu
    Zhang, Na
    KYBERNETES, 2017, 46 (04) : 672 - 692
  • [24] A novel visibility graph transformation of time series into weighted networks
    Xu, Paiheng
    Zhang, Rong
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 201 - 208
  • [25] A Center-based Community Detection Method In Weighted Networks
    Jin, Jie
    Pan, Lei
    Wang, Chongjun
    Xie, Junyuan
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 513 - 518
  • [26] A global routing method for weighted scale-free networks
    Pu Cun-Lai
    Pei Wen-Jiang
    ACTA PHYSICA SINICA, 2010, 59 (06) : 3841 - 3845
  • [27] Do-it-yourself services and work-like chores: on civic duties and digital public services
    Verne, Guri
    Bratteteig, Tone
    PERSONAL AND UBIQUITOUS COMPUTING, 2016, 20 (04) : 517 - 532
  • [28] Generating Attributed Networks with Communities
    Largeron, Christine
    Mougel, Pierre-Nicolas
    Rabbany, Reihaneh
    Zaiane, Osmar R.
    PLOS ONE, 2015, 10 (04):
  • [29] Generating Waves in Corticothalamocortical Networks
    Wester, Jason C.
    Contreras, Diego
    NEURON, 2013, 77 (06) : 995 - 997
  • [30] Generating Artificial Social Networks
    Johansson, Tobias
    QUANTITATIVE METHODS FOR PSYCHOLOGY, 2019, 15 (02): : 56 - 74