An RKHS model for variable selection in functional linear regression

被引:12
|
作者
Berrendero, Jose R. [1 ]
Bueno-Larraz, Beatriz [1 ]
Cuevas, Antonio [1 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
关键词
Feature selection; Functional linear regression; Impact points; Variable selection; CLASSIFICATION; DESIGN; SPACE;
D O I
10.1016/j.jmva.2018.04.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A mathematical model for variable selection in functional linear regression models with scalar response is proposed. By "variable selection" we mean a procedure to replace the whole trajectories of the functional explanatory variables with their values at a finite number of carefully selected instants (or "impact points"). The basic idea of our approach is to use the Reproducing Kernel Hilbert Space (RKHS) associated with the underlying process, instead of the more usual L-2 [0, 1] space, in the definition of the linear model. This turns out to be especially suitable for variable selection purposes, since the finite-dimensional linear model based on the selected "impact points" can be seen as a particular case of the RKHS-based linear functional model. In this framework, we address the consistent estimation of the optimal design of impact points and we check, via simulations and real data examples, the performance of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:25 / 45
页数:21
相关论文
共 50 条
  • [41] Variable selection in partial linear regression using the least angle regression
    Seo, Han Son
    Yoon, Min
    Lee, Hakbae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (06) : 937 - 944
  • [42] Modified see variable selection for linear instrumental variable regression models
    Zhao, Peixin
    Xue, Liugen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4852 - 4861
  • [43] Variable selection in multivariate linear regression with random predictors
    Mbina, Alban Mbina
    Nkiet, Guy Martial
    N'guessan, Assi
    SOUTH AFRICAN STATISTICAL JOURNAL, 2023, 57 (01) : 27 - 44
  • [44] Variable selection for linear regression models with random covariates
    Nkiet, GM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (12): : 1105 - 1110
  • [45] Improved variable selection procedure for multivariate linear regression
    Walmsley, AD
    ANALYTICA CHIMICA ACTA, 1997, 354 (1-3) : 225 - 232
  • [46] A robust and efficient variable selection method for linear regression
    Yang, Zhuoran
    Fu, Liya
    Wang, You-Gan
    Dong, Zhixiong
    Jiang, Yunlu
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (14) : 3677 - 3692
  • [47] Robust Bayesian nonparametric variable selection for linear regression
    Cabezas, Alberto
    Battiston, Marco
    Nemeth, Christopher
    STAT, 2024, 13 (02):
  • [48] Bayesian structured variable selection in linear regression models
    Min Wang
    Xiaoqian Sun
    Tao Lu
    Computational Statistics, 2015, 30 : 205 - 229
  • [49] Variable selection in semiparametric linear regression with censored data
    Johnson, Brent A.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 351 - 370
  • [50] Bootstrapping multiple linear regression after variable selection
    Lasanthi C. R. Pelawa Watagoda
    David J. Olive
    Statistical Papers, 2021, 62 : 681 - 700