An RKHS model for variable selection in functional linear regression

被引:12
|
作者
Berrendero, Jose R. [1 ]
Bueno-Larraz, Beatriz [1 ]
Cuevas, Antonio [1 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
关键词
Feature selection; Functional linear regression; Impact points; Variable selection; CLASSIFICATION; DESIGN; SPACE;
D O I
10.1016/j.jmva.2018.04.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A mathematical model for variable selection in functional linear regression models with scalar response is proposed. By "variable selection" we mean a procedure to replace the whole trajectories of the functional explanatory variables with their values at a finite number of carefully selected instants (or "impact points"). The basic idea of our approach is to use the Reproducing Kernel Hilbert Space (RKHS) associated with the underlying process, instead of the more usual L-2 [0, 1] space, in the definition of the linear model. This turns out to be especially suitable for variable selection purposes, since the finite-dimensional linear model based on the selected "impact points" can be seen as a particular case of the RKHS-based linear functional model. In this framework, we address the consistent estimation of the optimal design of impact points and we check, via simulations and real data examples, the performance of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:25 / 45
页数:21
相关论文
共 50 条
  • [31] Variable selection in Functional Additive Regression Models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 113 - 122
  • [32] Variable selection in functional regression models: A review
    Aneiros, German
    Novo, Silvia
    Vieu, Philippe
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [33] Variable selection in nonparametric functional concurrent regression
    Ghosal, Rahul
    Maity, Arnab
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 142 - 161
  • [34] Quantile regression and variable selection of partial linear single-index model
    Lv, Yazhao
    Zhang, Riquan
    Zhao, Weihua
    Liu, Jicai
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (02) : 375 - 409
  • [35] Consistent variable selection for functional regression models
    Collazos, Julian A. A.
    Dias, Ronaldo
    Zambom, Adriano Z.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 63 - 71
  • [36] Quantile regression and variable selection for partially linear model with randomly truncated data
    Xu, Hong-Xia
    Chen, Zhen-Long
    Wang, Jiang-Feng
    Fan, Guo-Liang
    STATISTICAL PAPERS, 2019, 60 (04) : 1137 - 1160
  • [37] Quantile regression and variable selection of partial linear single-index model
    Yazhao Lv
    Riquan Zhang
    Weihua Zhao
    Jicai Liu
    Annals of the Institute of Statistical Mathematics, 2015, 67 : 375 - 409
  • [38] Variable selection in functional additive regression models
    Manuel Febrero-Bande
    Wenceslao González-Manteiga
    Manuel Oviedo de la Fuente
    Computational Statistics, 2019, 34 : 469 - 487
  • [39] Variable Selection in Logistic Regression Model
    Zhang Shangli
    Zhang Lili
    Qiu Kuanmin
    Lu Ying
    Cai Baigen
    CHINESE JOURNAL OF ELECTRONICS, 2015, 24 (04) : 813 - 817
  • [40] Variable Selection in Logistic Regression Model
    ZHANG Shangli
    ZHANG Lili
    QIU Kuanmin
    LU Ying
    CAI Baigen
    ChineseJournalofElectronics, 2015, 24 (04) : 813 - 817