An RKHS model for variable selection in functional linear regression

被引:12
作者
Berrendero, Jose R. [1 ]
Bueno-Larraz, Beatriz [1 ]
Cuevas, Antonio [1 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
关键词
Feature selection; Functional linear regression; Impact points; Variable selection; CLASSIFICATION; DESIGN; SPACE;
D O I
10.1016/j.jmva.2018.04.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A mathematical model for variable selection in functional linear regression models with scalar response is proposed. By "variable selection" we mean a procedure to replace the whole trajectories of the functional explanatory variables with their values at a finite number of carefully selected instants (or "impact points"). The basic idea of our approach is to use the Reproducing Kernel Hilbert Space (RKHS) associated with the underlying process, instead of the more usual L-2 [0, 1] space, in the definition of the linear model. This turns out to be especially suitable for variable selection purposes, since the finite-dimensional linear model based on the selected "impact points" can be seen as a particular case of the RKHS-based linear functional model. In this framework, we address the consistent estimation of the optimal design of impact points and we check, via simulations and real data examples, the performance of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:25 / 45
页数:21
相关论文
共 31 条
[1]   Sparse nonparametric model for regression with functional covariate [J].
Aneiros, G. ;
Vieu, P. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (04) :839-859
[2]   Variable selection in infinite-dimensional problems [J].
Aneiros, German ;
Vieu, Philippe .
STATISTICS & PROBABILITY LETTERS, 2014, 94 :12-20
[3]  
Berlinet A., 2004, Reproducing-kernel Hilbert spaces in Probability and statistics, DOI 10.1007/978-1-4419-9096-9
[4]   On the Use of Reproducing Kernel Hilbert Spaces in Functional Classification [J].
Berrendero, Jose R. ;
Cuevas, Antonio ;
Torrecilla, Jose L. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) :1210-1218
[5]   VARIABLE SELECTION IN FUNCTIONAL DATA CLASSIFICATION: A MAXIMA-HUNTING PROPOSAL [J].
Berrendero, Jose R. ;
Cuevas, Antonio ;
Torrecilla, Jose L. .
STATISTICA SINICA, 2016, 26 (02) :619-638
[6]  
Cardot H., 2010, HDB FUNCTIONAL DATA, P21
[7]   Linear functional regression: the case of fixed design and functional response [J].
Cuevas, A ;
Febrero, M ;
Fraiman, R .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (02) :285-300
[8]   A partial overview of the theory of statistics with functional data [J].
Cuevas, Antonio .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 147 :1-23
[9]   Componentwise classification and clustering of functional data [J].
Delaigle, A. ;
Hall, P. ;
Bathia, N. .
BIOMETRIKA, 2012, 99 (02) :299-313
[10]   Sure independence screening for ultrahigh dimensional feature space [J].
Fan, Jianqing ;
Lv, Jinchi .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :849-883