Quantum classifier with tailored quantum kernel

被引:106
作者
Blank, Carsten [1 ]
Park, Daniel K. [2 ,3 ]
Rhee, June-Koo Kevin [2 ,3 ,4 ]
Petruccione, Francesco [2 ,4 ,5 ]
机构
[1] Data Cybernet, D-86899 Landsberg, Germany
[2] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, ITRC Quantum Comp AI, Daejeon 34141, South Korea
[4] Univ KwaZulu Natal, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Durban, Kwazulu Natal, South Africa
[5] KwaZulu Natal, Natl Inst Theoret Phys NITheP, ZA-4001 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
37;
D O I
10.1038/s41534-020-0272-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Kernel methods have a wide spectrum of applications in machine learning. Recently, a link between quantum computing and kernel theory has been formally established, opening up opportunities for quantum techniques to enhance various existing machine-learning methods. We present a distance-based quantum classifier whose kernel is based on the quantum state fidelity between training and test data. The quantum kernel can be tailored systematically with a quantum circuit to raise the kernel to an arbitrary power and to assign arbitrary weights to each training data. Given a specific input state, our protocol calculates the weighted power sum of fidelities of quantum data in quantum parallel via a swap-test circuit followed by two single-qubit measurements, requiring only a constant number of repetitions regardless of the number of data. We also show that our classifier is equivalent to measuring the expectation value of a Helstrom operator, from which the well-known optimal quantum state discrimination can be derived. We demonstrate the performance of our classifier via classical simulations with a realistic noise model and proof-of-principle experiments using the IBM quantum cloud platform.
引用
收藏
页数:7
相关论文
共 37 条
  • [1] 5-qubit backend: IBM Q team, 2019, 5 QUBIT BACKEND IBM
  • [2] Abraham H., 2019, QISKIT OPEN SOURCE F, DOI DOI 10.5281/ZENODO.2562110
  • [3] [Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
  • [4] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [5] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [6] Blank C., 2019, QUANTUM CLASSIFIER T
  • [7] Quantum fingerprinting
    Buhrman, H
    Cleve, R
    Watrous, J
    de Wolf, R
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (16)
  • [8] v Machine learning & artificial intelligence in the quantum domain: a review of recent progress
    Dunjko, Vedran
    Briegel, Hans J.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (07)
  • [9] Practical Quantum Error Mitigation for Near-Future Applications
    Endo, Suguru
    Benjamin, Simon C.
    Li, Ying
    [J]. PHYSICAL REVIEW X, 2018, 8 (03):
  • [10] Quantum random access memory
    Giovannetti, Vittorio
    Lloyd, Seth
    Maccone, Lorenzo
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (16)