Quantum classifier with tailored quantum kernel

被引:118
作者
Blank, Carsten [1 ]
Park, Daniel K. [2 ,3 ]
Rhee, June-Koo Kevin [2 ,3 ,4 ]
Petruccione, Francesco [2 ,4 ,5 ]
机构
[1] Data Cybernet, D-86899 Landsberg, Germany
[2] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, ITRC Quantum Comp AI, Daejeon 34141, South Korea
[4] Univ KwaZulu Natal, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Durban, Kwazulu Natal, South Africa
[5] KwaZulu Natal, Natl Inst Theoret Phys NITheP, ZA-4001 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Quantum optics - Classification (of information) - Computation theory - Machine learning;
D O I
10.1038/s41534-020-0272-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Kernel methods have a wide spectrum of applications in machine learning. Recently, a link between quantum computing and kernel theory has been formally established, opening up opportunities for quantum techniques to enhance various existing machine-learning methods. We present a distance-based quantum classifier whose kernel is based on the quantum state fidelity between training and test data. The quantum kernel can be tailored systematically with a quantum circuit to raise the kernel to an arbitrary power and to assign arbitrary weights to each training data. Given a specific input state, our protocol calculates the weighted power sum of fidelities of quantum data in quantum parallel via a swap-test circuit followed by two single-qubit measurements, requiring only a constant number of repetitions regardless of the number of data. We also show that our classifier is equivalent to measuring the expectation value of a Helstrom operator, from which the well-known optimal quantum state discrimination can be derived. We demonstrate the performance of our classifier via classical simulations with a realistic noise model and proof-of-principle experiments using the IBM quantum cloud platform.
引用
收藏
页数:7
相关论文
共 37 条
[1]  
5-qubit backend: IBM Q team, 2019, 5 QUBIT BACKEND IBM
[2]  
Abraham H., 2019, QISKIT OPEN SOURCE F, DOI DOI 10.5281/ZENODO.2562110
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[5]  
Blank C., 2019, QUANTUM CLASSIFIER T
[6]   Quantum fingerprinting [J].
Buhrman, H ;
Cleve, R ;
Watrous, J ;
de Wolf, R .
PHYSICAL REVIEW LETTERS, 2001, 87 (16)
[7]   v Machine learning & artificial intelligence in the quantum domain: a review of recent progress [J].
Dunjko, Vedran ;
Briegel, Hans J. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (07)
[8]   Practical Quantum Error Mitigation for Near-Future Applications [J].
Endo, Suguru ;
Benjamin, Simon C. ;
Li, Ying .
PHYSICAL REVIEW X, 2018, 8 (03)
[9]   Quantum random access memory [J].
Giovannetti, Vittorio ;
Lloyd, Seth ;
Maccone, Lorenzo .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[10]   Architectures for a quantum random access memory [J].
Giovannetti, Vittorio ;
Lloyd, Seth ;
Maccone, Lorenzo .
PHYSICAL REVIEW A, 2008, 78 (05)