MarkovHC: Markov hierarchical clustering for the topological structure of high-dimensional single-cell omics data with transition pathway and critical point detection

被引:8
|
作者
Wang, Zhenyi [1 ,2 ,3 ,4 ]
Zhong, Yanjie [10 ]
Ye, Zhaofeng [5 ,6 ,7 ]
Zeng, Lang [11 ]
Chen, Yang [1 ,2 ,3 ,4 ]
Shi, Minglei [5 ,6 ,7 ]
Yuan, Zhiyuan [1 ,2 ,3 ,4 ]
Zhou, Qiming [12 ,13 ,14 ]
Qian, Minping [8 ]
Zhang, Michael Q. [1 ,2 ,3 ,4 ,5 ,6 ,7 ,9 ]
机构
[1] Tsinghua Univ, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Bioinformat Div, BNRist, Beijing 100084, Peoples R China
[3] Tsinghua Univ, BNRist, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Sch Med, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Sch Med, BNRist, Bioinformat Div, Beijing 100084, Peoples R China
[7] Tsinghua Univ, Sch Med, BNRist, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
[8] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[9] Univ Texas Richardson, Ctr Syst Biol, Dept Biol Sci, Richardson, TX 75080 USA
[10] Washington Univ, Dept Math & Stat, St Louis, MO 63130 USA
[11] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[12] Tsinghua Univ, Sch Life Sci, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[13] Tsinghua Univ, Sch Life Sci, BNRist, Bioinformat Div, Beijing 100084, Peoples R China
[14] Tsinghua Univ, Sch Life Sci, BNRist, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
关键词
EFFICIENT ALGORITHM; CANCER; VISUALIZATION; EXPRESSION; CYTOMETRY;
D O I
10.1093/nar/gkab1132
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clustering cells and depicting the lineage relationship among cell subpopulations are fundamental tasks in single-cell omics studies. However, existing analytical methods face challenges in stratifying cells, tracking cellular trajectories, and identifying critical points of cell transitions. To overcome these, we proposed a novel Markov hierarchical clustering algorithm (MarkovHC), a topological clustering method that leverages the metastability of exponentially perturbed Markov chains for systematically reconstructing the cellular landscape. Briefly, MarkovHC starts with local connectivity and density derived from the input and outputs a hierarchical structure for the data. We firstly benchmarked MarkovHC on five simulated datasets and ten public single-cell datasets with known labels. Then, we used MarkovHC to investigate the multi-level architectures and transition processes during human embryo preimplantation development and gastric cancer procession. MarkovHC found heterogeneous cell states and sub-cell types in lineage-specific progenitor cells and revealed the most possible transition paths and critical points in the cellular processes. These results demonstrated MarkovHC's effectiveness in facilitating the stratification of cells, identification of cell populations, and characterization of cellular trajectories and critical points.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 10 条
  • [1] SCALABLE VISUALIZATION FOR HIGH-DIMENSIONAL SINGLE-CELL DATA
    Kim, Juho
    Russell, Nate
    Peng, Jian
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 623 - 634
  • [2] Meeting the Challenges of High-Dimensional Single-Cell Data Analysis in Immunology
    Patil, Subarea
    Heuser, Christoph
    de Almeida, Gustavo P.
    Theis, Fabian J.
    Zielinski, Christina E.
    FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [3] Diffusion maps for high-dimensional single-cell analysis of differentiation data
    Haghverdi, Laleh
    Buettner, Florian
    Theis, Fabian J.
    BIOINFORMATICS, 2015, 31 (18) : 2989 - 2998
  • [4] Robust lineage reconstruction from high-dimensional single-cell data
    Giecold, Gregory
    Marco, Eugenio
    Garcia, Sara P.
    Trippa, Lorenzo
    Yuan, Guo-Cheng
    NUCLEIC ACIDS RESEARCH, 2016, 44 (14)
  • [5] Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
    Ocone, Andrea
    Haghverdi, Laleh
    Mueller, Nikola S.
    Theis, Fabian J.
    BIOINFORMATICS, 2015, 31 (12) : 89 - 96
  • [6] Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre
    Ashhurst, Thomas Myles
    Marsh-Wakefield, Felix
    Putri, Givanna Haryono
    Spiteri, Alanna Gabrielle
    Shinko, Diana
    Read, Mark Norman
    Smith, Adrian Lloyd
    King, Nicholas Jonathan Cole
    CYTOMETRY PART A, 2022, 101 (03) : 237 - 253
  • [7] Robustness of Visualization Methods in Preserving the Continuous and Discrete Latent Structures of High-Dimensional Single-Cell Data
    Malepathirana, Tamasha
    Senanayake, Damith A.
    Gautam, Vini
    Halgamuge, Saman K.
    2021 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2021, : 174 - 182
  • [8] Visualizing High-dimensional single-cell RNA-sequencing data through multiple Random Projections
    Tasoulis, Sotiris K.
    Vrahatis, Aristidis G.
    Georgakopoulos, Spiros V.
    Plagianakos, Vassilis P.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5448 - 5450
  • [9] Visualizing High-Dimensional Single-Cell RNA-seq Data via Random Projections and Geodesic Distances
    Vrahatis, Aristidis G.
    Tasoulis, Sotiris K.
    Dimitrakopoulos, Georgios N.
    Plagianakos, Vassilis P.
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 115 - 120
  • [10] High-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia
    Chulian, Salvador
    Martinez-Rubio, Alvaro
    Perez-Garcia, Victor M.
    Rosa, Maria
    Blazquez Goni, Cristina
    Rodriguez Gutierrez, Juan Francisco
    Hermosin-Ramos, Lourdes
    Molinos Quintana, Agueda
    Caballero-Velazquez, Teresa
    Ramirez-Orellana, Manuel
    Castillo Robleda, Ana
    Luis Fernandez-Martinez, Juan
    CANCERS, 2021, 13 (01) : 1 - 20