Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrodinger Equations

被引:0
|
作者
Li, Hao-chen [1 ,2 ]
Sun, Jian-qiang [1 ]
Ye, Hang [1 ]
He, Xue-jun [1 ]
机构
[1] Hainan Univ, Sch Sci, Dept Math, Haikou 570228, Hainan, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
the nonlinear Schrodinger equation; multi-symplectic scheme; dispersion analysis; group velocity; BACKWARD ERROR ANALYSIS; NUMERICAL-METHODS; HAMILTONIAN PDES; INTEGRATORS;
D O I
10.1007/s10255-020-0933-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrodinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrodinger equations.
引用
收藏
页码:503 / 515
页数:13
相关论文
共 50 条
  • [41] Multi-symplectic variational integrators for nonlinear Schrdinger equations with variable coefficients
    廖翠萃
    崔金超
    梁久祯
    丁效华
    Chinese Physics B, 2016, (01) : 423 - 431
  • [42] Conservative Properties Analysis of Multi-symplectic Integrator for the Schrodinger Equation with Wave Operator
    Kong, Linghua
    Wang, Lan
    Yin, Xiuling
    Duan, Yali
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1283 - 1286
  • [43] Novel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrodinger Equation with Trapped Term
    Hong, Jialin
    Kong, Linghua
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (03) : 613 - 630
  • [44] Multi-symplectic preserving integrator for the Schrodinger equation with wave operator
    Wang, Lan
    Kong, Linghua
    Zhang, Liying
    Zhou, Wenying
    Zheng, Xiaohong
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (22) : 6817 - 6829
  • [45] Multi-symplectic wavelet collocation method for the nonlinear Schrodinger equation and the Camassa-Holm equation
    Zhu, Huajun
    Song, Songhe
    Tang, Yifa
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (03) : 616 - 627
  • [46] Multi-symplectic scheme and norm conserving law of generalized nonlinear schrödinger equation
    School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
    Jisuan Wuli, 2009, 5 (693-698): : 693 - 698
  • [47] Applications of the Multi-Symplectic Euler-box Scheme
    Wang, Yushun
    Wang, Bin
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 908 - +
  • [48] Meshless symplectic and multi-symplectic scheme for the coupled nonlinear Schr?dinger system based on local RBF approximation
    Zhang, Shengliang
    Sun, Zhengjie
    Kumar, Alpesh
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 134 : 16 - 32
  • [49] Analysis of a symplectic difference scheme for a coupled nonlinear Schrodinger system
    Wang, Tingchun
    Nie, Tao
    Zhang, Luming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (02) : 745 - 759
  • [50] Explicit multi-symplectic methods for Hamiltonian wave equations
    Hong, Jialin
    Jiang, Shanshan
    Li, Chun
    Liu, Hongyu
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (04) : 662 - 683