Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrodinger Equations

被引:0
|
作者
Li, Hao-chen [1 ,2 ]
Sun, Jian-qiang [1 ]
Ye, Hang [1 ]
He, Xue-jun [1 ]
机构
[1] Hainan Univ, Sch Sci, Dept Math, Haikou 570228, Hainan, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
the nonlinear Schrodinger equation; multi-symplectic scheme; dispersion analysis; group velocity; BACKWARD ERROR ANALYSIS; NUMERICAL-METHODS; HAMILTONIAN PDES; INTEGRATORS;
D O I
10.1007/s10255-020-0933-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrodinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrodinger equations.
引用
收藏
页码:503 / 515
页数:13
相关论文
共 50 条
  • [31] A multi-symplectic scheme for RLW equation
    Sun, YJ
    Qin, MZ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (04) : 611 - 621
  • [32] Numerical analysis of a multi-symplectic scheme for the time-domain Maxwell's equations
    Wang, Yushun
    Jiang, Juan
    Cai, Wenjun
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (12)
  • [33] Multi-symplectic scheme for the coupled Schrdinger-Boussinesq equations
    黄浪扬
    焦艳东
    梁德民
    Chinese Physics B, 2013, (07) : 49 - 53
  • [34] Multi-symplectic methods for the coupled 1D nonlinear Schrodinger system
    Sun, JQ
    Qin, MZ
    COMPUTER PHYSICS COMMUNICATIONS, 2003, 155 (03) : 221 - 235
  • [35] Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schrodinger Equation
    陈亚铭
    朱华君
    宋松和
    CommunicationsinTheoreticalPhysics, 2011, 56 (10) : 617 - 622
  • [36] Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schrodinger Equation
    Chen Ya-Ming
    Zhu Hua-Jun
    Song Song-He
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (04) : 617 - 622
  • [37] Multi-Symplectic Simulation on Soliton-Collision for Nonlinear Perturbed Schrodinger Equation
    Zhang, Peijun
    Hu, Weipeng
    Wang, Zhen
    Qiao, Zhijun
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (04) : 1467 - 1482
  • [38] A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise
    Hong, Jialin
    Ji, Lihai
    Zhang, Liying
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 255 - 268
  • [39] Multi-symplectic Runge-Kutta methods for nonlinear dirac equations
    Hong, JL
    Li, C
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (02) : 448 - 472
  • [40] A New Multi-Symplectic Scheme for the KdV Equation
    Lv Zhong-Quan
    Xue Mei
    Wang Yu-Shun
    CHINESE PHYSICS LETTERS, 2011, 28 (06)