共 50 条
Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrodinger Equations
被引:0
|作者:
Li, Hao-chen
[1
,2
]
Sun, Jian-qiang
[1
]
Ye, Hang
[1
]
He, Xue-jun
[1
]
机构:
[1] Hainan Univ, Sch Sci, Dept Math, Haikou 570228, Hainan, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
the nonlinear Schrodinger equation;
multi-symplectic scheme;
dispersion analysis;
group velocity;
BACKWARD ERROR ANALYSIS;
NUMERICAL-METHODS;
HAMILTONIAN PDES;
INTEGRATORS;
D O I:
10.1007/s10255-020-0933-4
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrodinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrodinger equations.
引用
收藏
页码:503 / 515
页数:13
相关论文