Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrodinger Equations

被引:0
|
作者
Li, Hao-chen [1 ,2 ]
Sun, Jian-qiang [1 ]
Ye, Hang [1 ]
He, Xue-jun [1 ]
机构
[1] Hainan Univ, Sch Sci, Dept Math, Haikou 570228, Hainan, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
the nonlinear Schrodinger equation; multi-symplectic scheme; dispersion analysis; group velocity; BACKWARD ERROR ANALYSIS; NUMERICAL-METHODS; HAMILTONIAN PDES; INTEGRATORS;
D O I
10.1007/s10255-020-0933-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrodinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrodinger equations.
引用
收藏
页码:503 / 515
页数:13
相关论文
共 50 条
  • [21] Symplectic and multi-symplectic wavelet collocation methods for two-dimensional Schrodinger equations
    Zhu, Huajun
    Chen, Yaming
    Song, Songhe
    Hu, Huayu
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (03) : 308 - 321
  • [22] Meshless symplectic and multi-symplectic local RBF collocation methods for nonlinear Schrodinger equation
    Zhang, Shengliang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 450
  • [23] Explicit multi-symplectic methods for Klein-Gordon-Schrodinger equations
    Hong, Jialin
    Jiang, Shanshan
    Li, Chun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (09) : 3517 - 3532
  • [24] A new multi-symplectic scheme for nonlinear "good" Boussinesq equation
    Huang, LY
    Zeng, WP
    Qin, MZ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (06) : 703 - 714
  • [25] Two new simple multi-symplectic schemes for the nonlinear schrodinger equation
    Wang, Yu-Shun
    Li, Qing-Hong
    Song, Yong-Zhong
    CHINESE PHYSICS LETTERS, 2008, 25 (05) : 1538 - 1540
  • [26] A semi-explicit multi-symplectic splitting scheme for a 3-coupled nonlinear Schrodinger equation
    Qian, Xu
    Song, Songhe
    Chen, Yaming
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (04) : 1255 - 1264
  • [27] New explicit multi-symplectic scheme for nonlinear wave equation
    Li, Hao-chen
    Sun, Jian-qiang
    Qin, Meng-zhao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (03) : 369 - 380
  • [28] New explicit multi-symplectic scheme for nonlinear wave equation
    Hao-chen Li
    Jian-qiang Sun
    Meng-zhao Qin
    Applied Mathematics and Mechanics, 2014, 35 : 369 - 380
  • [29] New explicit multi-symplectic scheme for nonlinear wave equation
    李昊辰
    孙建强
    秦孟兆
    AppliedMathematicsandMechanics(EnglishEdition), 2014, 35 (03) : 369 - 380
  • [30] A NEW MULTI-SYMPLECTIC SCHEME FOR NONLINEAR“GOOD”BOUSSINESQ EQUATION
    Lang-yang Huang Wen-ping Zeng (Department of Mathematics
    JournalofComputationalMathematics, 2003, (06) : 703 - 714