Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrodinger Equations

被引:0
|
作者
Li, Hao-chen [1 ,2 ]
Sun, Jian-qiang [1 ]
Ye, Hang [1 ]
He, Xue-jun [1 ]
机构
[1] Hainan Univ, Sch Sci, Dept Math, Haikou 570228, Hainan, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
the nonlinear Schrodinger equation; multi-symplectic scheme; dispersion analysis; group velocity; BACKWARD ERROR ANALYSIS; NUMERICAL-METHODS; HAMILTONIAN PDES; INTEGRATORS;
D O I
10.1007/s10255-020-0933-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrodinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrodinger equations.
引用
收藏
页码:503 / 515
页数:13
相关论文
共 50 条
  • [1] Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schr?dinger Equations
    Hao-chen LI
    Jian-qiang SUN
    Hang YE
    Xue-jun HE
    Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 503 - 515
  • [2] Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations
    Hao-chen Li
    Jian-qiang Sun
    Hang Ye
    Xue-jun He
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 503 - 515
  • [3] Multi-symplectic scheme for the coupled Schrodinger-Boussinesq equations
    Huang Lang-Yang
    Jiao Yan-Dong
    Liang De-Min
    CHINESE PHYSICS B, 2013, 22 (07)
  • [4] Symplectic and multi-symplectic methods for coupled nonlinear Schrodinger equations with periodic solutions
    Aydin, A.
    Karasoezen, B.
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (07) : 566 - 583
  • [5] Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation
    Chen, JB
    Qin, MZ
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) : 1095 - 1106
  • [6] Stochastic symplectic and multi-symplectic methods for nonlinear Schrodinger equation with white noise dispersion
    Cui, Jianbo
    Hong, Jialin
    Liu, Zhihui
    Zhou, Weien
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 342 : 267 - 285
  • [7] Multi-symplectic variational integrators for nonlinear Schrodinger equations with variable coefficients
    Liao, Cui-Cui
    Cui, Jin-Chao
    Liang, Jiu-Zhen
    Ding, Xiao-Hua
    CHINESE PHYSICS B, 2016, 25 (01)
  • [8] Multi-symplectic methods for generalized Schrodinger equations
    Islas, AL
    Schober, CM
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2003, 19 (03): : 403 - 413
  • [9] Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell's equations
    Cai, Wenjun
    Wang, Yushun
    Song, Yongzhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 330 - 352
  • [10] Numerical analysis of a multi-symplectic scheme for a strongly coupled Schrodinger system
    Wang, Tingchun
    Zhang, Luming
    Chen, Fangqi
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) : 413 - 431