Pseudo-integral and generalized Choquet integral

被引:24
作者
Zhang, Deli [1 ]
Mesiar, Radko [2 ,3 ]
Pap, Endre [4 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Jilin, Peoples R China
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Radlinskeho 11, Bratislava 81005, Slovakia
[3] Palacky Univ, Olomouc,17 listopadu 12, Olomouc 77146, Czech Republic
[4] Singidunum Univ, Danijelova 29, Belgrade 11000, Serbia
关键词
Semiring; Pseudo; -integral; Choquet integral; Fuzzy integral; Generalized Choquet integral; CONVERGENCE THEOREMS; PRE-AGGREGATION; AUTOCONTINUITY; INEQUALITY;
D O I
10.1016/j.fss.2020.12.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Due to many applications, the Choquet integral as a powerful tool for modeling non-deterministic problems needs to be further extended. Therefore the paper is devoted to a generalization of the Choquet integral. As a basis, the pseudo-integral for bounded integrand is extended to the case for nonnegative integrands at first, and then the generalized Choquet integral is defined. As special cases, pseudo-Choquet Stieltjes integrals, pseudo-fuzzy Stieltjes integrals, g-Choquet integrals, pseudo-(N)fuzzy integrals and pseudo-(S)fuzzy integrals are obtained, and various kinds of properties and convergence theorems are shown, meanwhile Markov, Jensen, Minkowski and Holder inequalities are proved. In the end, the generalized discrete Choquet integral is discussed. The obtained results for the generalized Choquet integral cover some previous results on different types of nonadditive integrals.(c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 221
页数:29
相关论文
共 55 条
[1]   STOLARSKY'S INEQUALITY FOR CHOQUET-LIKE EXPECTATION [J].
Agahi, Hamzeh ;
Mesiar, Radko .
MATHEMATICA SLOVACA, 2016, 66 (05) :1235-1248
[2]   Holder and Minkowski type inequalities for pseudo-integral [J].
Agahi, Hamzeh ;
Yao Ouyang ;
Mesiar, Radko ;
Pap, Endre ;
Strboja, Mirjana .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (21) :8630-8639
[3]  
[Anonymous], 1974, Dr. Thesis
[4]   The Structure of Extended Real-valued Metric Spaces [J].
Beer, Gerald .
SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (04) :591-602
[5]   d-Choquet integrals: Choquet integrals based on dissimilarities [J].
Bustince, H. ;
Mesiar, R. ;
Fernandez, J. ;
Galar, M. ;
Paternain, D. ;
Altalhi, A. ;
Dimuro, G. P. ;
Bedregal, B. ;
Takac, Z. .
FUZZY SETS AND SYSTEMS, 2021, 414 :1-27
[6]  
Choquet G., 1953, ANN I FOURIER GRENOB, V5, P131, DOI [DOI 10.5802/AIF.53, 10.5802/aif.53]
[7]   Non-Newtonian Mathematics Instead of Non-Newtonian Physics: Dark Matter and Dark Energy from a Mismatch of Arithmetics [J].
Czachor, Marek .
FOUNDATIONS OF SCIENCE, 2021, 26 (01) :75-95
[8]  
Denneberg D, 1994, Non-Additive Measure and Integral
[9]   The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions [J].
Dimuro, Gracaliz Pereira ;
Fernandez, Javier ;
Bedregal, Benjamin ;
Mesiar, Radko ;
Antonio Sanz, Jose ;
Lucca, Giancarlo ;
Bustince, Humberto .
INFORMATION FUSION, 2020, 57 :27-43
[10]   ON A CHOQUET-STIELTJES TYPE INTEGRAL ON INTERVALS [J].
Gal, Sorin G. .
MATHEMATICA SLOVACA, 2019, 69 (04) :801-814