Metal-derived nanoparticles in tumor theranostics: Potential and limitations

被引:42
作者
Kuchur, O. A. [1 ]
Tsymbal, S. A. [1 ]
Shestovskaya, M., V [1 ]
Serov, N. S. [1 ]
Dukhinova, M. S. [1 ]
Shtil, A. A. [1 ,2 ]
机构
[1] ITMO Univ, Int Inst Solut Chem Adv Mat & Technol, 9 Lomonosov St, St Petersburg 197101, Russia
[2] Russian Acad Sci, Inst Gene Biol, Moscow 119334, Russia
基金
俄罗斯基础研究基金会;
关键词
Metal nanoparticles; Tumor microenvironment; Radiotherapy; Chemotherapy; Immunity; Cancer; IRON-OXIDE NANOPARTICLES; MESOPOROUS SILICA NANOPARTICLES; COATED MAGNETIC NANOPARTICLES; GOLD NANOPARTICLES; IN-VIVO; SILVER NANOPARTICLES; DRUG-DELIVERY; QUANTUM DOTS; GREEN SYNTHESIS; LASER-ABLATION;
D O I
10.1016/j.jinorgbio.2020.111117
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Initially, metal derived nanoparticles have been used exclusively as contrasting agents in magnetic resonance imaging. Today, green routes of chemical synthesis together with numerous modifications of the core and surface gave rise to a plethora of biomedical applications of metal derived nanoparticles including tumor imaging, diagnostics, and therapy. These materials are an emerging class of tools for tumor theranostics. Nevertheless, the spectrum of clinically approved metal nanoparticles remains narrow, as the safety, specificity and efficiency still have to be improved. In this review we summarize the major directions for development and biomedical applications of metal based nanoparticles and analyze their effects on tumor cells and microenvironment. We discuss the advantages and possible limitations of metal nanoparticle-based tumor theranostics, as well as the potential strategies to improve the in vivo performance of these unique materials.
引用
收藏
页数:13
相关论文
共 241 条
[1]   Size-controlled synthesis of machinable single crystalline gold nanoplates [J].
Ah, CS ;
Yun, YJ ;
Park, HJ ;
Kim, WJ ;
Ha, DH ;
Yun, WS .
CHEMISTRY OF MATERIALS, 2005, 17 (22) :5558-5561
[2]   Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum [J].
Ahmad, A ;
Mukherjee, P ;
Senapati, S ;
Mandal, D ;
Khan, MI ;
Kumar, R ;
Sastry, M .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2003, 28 (04) :313-318
[3]   Biological Targeting of Plasmonic Nanoparticles Improves Cellular Imaging via the Enhanced Scattering in the Aggregates Formed [J].
Aioub, Mena ;
Kang, Bin ;
Mackey, Megan A. ;
El-Sayed, Mostafa A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (15) :2555-2561
[4]   Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats [J].
Alalaiwe, Ahmed ;
Roberts, Georgia ;
Carpinone, Paul ;
Munson, John ;
Roberts, Stephen .
DRUG DELIVERY, 2017, 24 (01) :591-598
[5]  
[Anonymous], 2016, BIOL EFFECTS METAL N, P219, DOI [10.1007/978-3-319-30906-4_7, DOI 10.1007/978-3-319-3090641]
[6]   Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge [J].
Antonia Busquets, Maria ;
Espargaro, Alba ;
Sabate, Raimon ;
Estelrich, Joan .
NANOMATERIALS, 2015, 5 (04) :2231-2248
[7]   A spectral CT study on iodine augmentation of radiation therapy and its potential for combination with chemotherapy [J].
Badea, C. T. ;
Ghaghada, K. ;
Holbrook, M. D. ;
Bhandari, P. ;
Clark, D. P. ;
Qi, Y. ;
Mowery, Y. .
MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
[8]   Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors [J].
Badea, C. T. ;
Clark, D. P. ;
Holbrook, M. ;
Srivastava, M. ;
Mowery, Y. ;
Ghaghada, K. B. .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (06)
[9]   Dual Role of Magnetic Nanoparticles as Intracellular Hotspots and Extracellular Matrix Disruptors Triggered by Magnetic Hyperthermia in 3D Cell Culture Models [J].
Beola, Lilianne ;
Asin, Laura ;
Fratila, Raluca M. ;
Herrero, Vanessa ;
de la Fuente, Jesus M. ;
Grazu, Valeria ;
Gutierrez, Lucia .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (51) :44301-44313
[10]   Radioactive 198Au-Doped Nanostructures with Different Shapes for In Vivo Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution [J].
Black, Kvar C. L. ;
Wang, Yucai ;
Luehmann, Hannah P. ;
Cai, Xin ;
Xing, Wenxin ;
Pang, Bo ;
Zhao, Yongfeng ;
Cutler, Cathy S. ;
Wang, Lihong V. ;
Liu, Yongjian ;
Xia, Younan .
ACS NANO, 2014, 8 (05) :4385-4394