The Well Posedness for Nonhomogeneous Boussinesq Equations

被引:1
作者
Liu, Yan [1 ]
Ouyang, Baiping [2 ]
机构
[1] Guangdong Univ Finance, Dept Math, Guangzhou 510521, Peoples R China
[2] Guangzhou Huashang Coll, Sch Data Sci, Guangzhou 511300, Peoples R China
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
关键词
non homogenous boussinesq equations; global well-posedness; littlewood-paley decomposition; BLOW-UP CRITERION; GLOBAL EXISTENCE; CRITICAL SPACES; LOCAL EXISTENCE; SYSTEM;
D O I
10.3390/sym13112110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equations. We built the results on the critical Besov spaces (?,u)& ISIN;LT infinity(Bp,1N/p)xLT infinity(Bp,1N/p-1)?LT1(Bp,1N/p+1) with 1 p < 2N. We proved the global existence of the solution when the initial velocity is small withrespect to the viscosity, as well as the initial temperature approaches a positive constant. Furthermore, weproved the uniqueness for1 < p=N. Our results can been seen as a version of symmetry in Besov spacefor the Boussinesq equations.
引用
收藏
页数:14
相关论文
共 34 条