MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network

被引:55
作者
Boni, Kevin N. D. Brou [1 ,2 ]
Klein, John [2 ]
Vanquin, Ludovic [1 ]
Wagner, Antoine [1 ]
Lacornerie, Thomas [1 ]
Pasquier, David [2 ,3 ]
Reynaert, Nick [1 ,4 ]
机构
[1] Ctr Oscar Lambret, Dept Med Phys, Lille, France
[2] Univ Lille, CNRS, UMR 9189 CRIStAL, Cent Lille, Lille, France
[3] Ctr Oscar Lambret, Dept Radiotherapy, Lille, France
[4] Inst Jules Bordet, Dept Med Phys, Brussels, Belgium
关键词
CT synthesis; Generative Adversarial Networks; radiotherapy; MRI; dose evaluation;
D O I
10.1088/1361-6560/ab7633
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The establishment of an MRI-only workflow in radiotherapy depends on the ability to generate an accurate synthetic CT (sCT) for dose calculation. Previously proposed methods have used a Generative Adversarial Network (GAN) for fast sCT generation in order to simplify the clinical workflow and reduces uncertainties. In the current paper we use a conditional Generative Adversarial Network (cGAN) framework called pix2pixHD to create a robust model prone to multicenter data. This study included T2-weighted MR and CT images of 19 patients in treatment position from 3 different sites. The cGAN was trained on 2D transverse slices of 11 patients from 2 different sites. Once trained, the network was used to generate sCT images of 8 patients coming from a third site. The Mean Absolute Errors (MAE) for each patient were evaluated between real and synthetic CTs. A radiotherapy plan was optimized on the sCT series and re-calculated on CTs to assess the dose distribution in terms of voxel-wise dose difference and Dose Volume Histograms (DVH) analysis. It takes on average of 7.5s<i to generate a complete sCT (88 slices) for a patient on our GPU. The average MAE in HU between the sCT and actual patient CT (within the body contour) is 48.5 +/- 6 HU with our method. The maximum dose difference to the target is 1.3%. This study demonstrates that an sCT can be generated in a multicentric context, with fewer pre-processing steps while being fast and accurate.
引用
收藏
页数:7
相关论文
共 13 条
[1]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[2]   MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network [J].
Dinkla, Anna M. ;
Wolterink, Jelmer M. ;
Maspero, Matteo ;
Savenije, Mark H. F. ;
Verhoeff, Joost J. C. ;
Seravalli, Enrica ;
Isgum, Ivana ;
Seevinck, Peter R. ;
van den Berg, Cornelis A. T. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04) :801-812
[3]  
Goodfellow I.J., 2014, ADV NEUR IN, p1406.2661, DOI DOI 10.1145/3422622
[4]   MR-based synthetic CT generation using a deep convolutional neural network method [J].
Han, Xiao .
MEDICAL PHYSICS, 2017, 44 (04) :1408-1419
[5]  
Hinton G. E., 2012, ar**v preprint ar**v:1207.0580, DOI DOI 10.48550/ARXIV.1207.0580
[6]  
Isola P., 2017, P IEEE C COMP VIS PA, V1125, P1125
[7]   Perceptual Losses for Real-Time Style Transfer and Super-Resolution [J].
Johnson, Justin ;
Alahi, Alexandre ;
Li Fei-Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :694-711
[8]   Least Squares Generative Adversarial Networks [J].
Mao, Xudong ;
Li, Qing ;
Xie, Haoran ;
Lau, Raymond Y. K. ;
Wang, Zhen ;
Smolley, Stephen Paul .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2813-2821
[9]   Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy [J].
Maspero, Matteo ;
Savenije, Mark H. F. ;
Dinkla, Anna M. ;
Seevinck, Peter R. ;
Intven, Martijn P. W. ;
Jurgenliemk-Schulz, Ina M. ;
Kerkmeijer, Linda G. W. ;
van den Berg, Cornelis A. T. .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (18)
[10]  
Nie Dong, 2017, Med Image Comput Comput Assist Interv, V10435, P417, DOI 10.1007/978-3-319-66179-7_48