BAEYER-VILLIGER OXIDATION OF SOME STEROIDS BY Aspergillus tamarii MRC 72400

被引:13
|
作者
Yildirim, Kudret [1 ]
Uzuner, Ahmet [1 ]
Gulcuoglu, Emine Yasemin [1 ]
机构
[1] Sakarya Univ, Dept Chem, TR-54187 Sakarya, Turkey
关键词
Steroids; Biotransformation; Biocatalysis; Aspergillus tamarii; Baeyer-Villiger oxidation; MINOR HYDROXYLATION PATHWAY; AROMATASE INHIBITORS; LACTONIZATION PATHWAY; CYCLOPIAZONIC ACID; KITA REVEALS; TRANSFORMATION; PROGESTERONE; BIOTRANSFORMATION; SERIES; FATE;
D O I
10.1135/cccc2011008
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biotransformations of epiandrosterone (1), dehydroepiandrosterone (2), testosterone (3), progesterone (4) and pregnenolone (5) by Aspergillus tamarii MRC 72400 for 5 days have been reported and the results of these incubations have been compared with previously published data obtained with Aspergillus tamarii QM 1223. A. tamarii MRC 72400 showed higher Bayer-Villiger monooxygenase activities than A. tamarii QM 1223 did. Apart from pregnenolone (5), A. tamarii MRC 72400 metabolized these steroids in different ways. Incubation of epiandrosterone (1) afforded 3 beta, 11 beta-dihydroxy-5 alpha-androstan-17-one (6) (3%) and 3 beta-hydroxy-17a-oxa-D-homo-5 alpha-androstan-17-one (7) (9.5%). Incubation of dehydroepiandrosterone (2) afforded 3 beta-hydroxy-17a-oxa-D-homoandrost-5-en-17-one (8) (28%), testolactone (9) (6%), 3 beta, 7 beta-dihydroxyandrost-5-en-17-one (10) (13%) and 3 beta, 7 alpha-dihydroxy-androst-5-en-17-one (11) (24%). Incubation of testosterone (3) afforded testolactone (9) (58%). Incubation of progesterone (4) also afforded testolactone (9), however in higher yield (86%). Incubation of pregnenolone (5) afforded 3 beta-hydroxy-17a-oxa-D-homoandrost-5-en-17-one (8) (25%) and testolactone (9) (27%).
引用
收藏
页码:743 / 754
页数:12
相关论文
共 50 条
  • [21] Unraveling the mechanism and kinetics of aerobic Baeyer-Villiger oxidation of cyclohexanone
    Wang, Jiexiang
    Chen, Xiaoling
    Sim, Ley Boon
    Guan, Lei
    He, Xiaoqi
    Zhou, Xiantai
    Chen, Binghui
    AICHE JOURNAL, 2024, 70 (01)
  • [22] Baeyer-Villiger oxidation of cyclohexanone to ε-caprolactone in airlift sonochemical reactor
    Zhang, Ping
    Yang, Mei
    Lu, Xiaoping
    Han, Pingfang
    Wang, Yanru
    ULTRASONICS, 2006, 44 (e393-e395) : E393 - E395
  • [24] A new and selective metal-catalyzed Baeyer-Villiger oxidation procedure
    Gottlich, R
    Yamakoshi, K
    Sasai, H
    Shibasaki, M
    SYNLETT, 1997, (08) : 971 - &
  • [25] Baeyer-Villiger Oxidation of Cyclobutanones with 10-Methylacridinium as an Efficient Organocatalyst
    Xu, Hua-Jian
    Zhu, Feng-Fei
    Shen, Yong-Ya
    Wan, Xin
    Feng, Yi-Si
    TETRAHEDRON, 2012, 68 (22) : 4145 - 4151
  • [26] Alumina-catalyzed Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide
    Steffen, Rafael Augusto
    Teixeira, Sergio
    Sepulveda, Jorge
    Rinaldi, Roberto
    Schuchardt, Ulf
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2008, 287 (1-2) : 41 - 44
  • [27] Chemo-enzymatic Baeyer-Villiger oxidation of cyclopentanone and substituted cyclopentanones
    Rios, Maria Yolanda
    Salazar, Enrique
    Olivo, Horacio F.
    JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2008, 54 (3-4) : 61 - 66
  • [28] A new microorganism for highly stereospecific Baeyer-Villiger oxidation of prochiral cyclobutanones
    Alphand, V
    Mazzini, C
    Lebreton, J
    Furstoss, R
    JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 1998, 5 (1-4) : 219 - 221
  • [29] The active sites in the heterogeneous Baeyer-Villiger oxidation of cyclopentanone by hydrotalcite catalysts
    Ueno, S
    Ebitani, K
    Ookubo, A
    Kaneda, K
    APPLIED SURFACE SCIENCE, 1997, 121 : 366 - 371
  • [30] On oxygen limitation in a whole cell biocatalytic Baeyer-Villiger oxidation process
    Baldwin, Christopher V. F.
    Woodley, John M.
    BIOTECHNOLOGY AND BIOENGINEERING, 2006, 95 (03) : 362 - 369