Existence and asymptotic properties of solutions for a nonlinear Schrodinger elliptic equation from geophysical fluid flows

被引:62
作者
Zhang, Xinguang [1 ,3 ]
Jiang, Jiqiang [2 ]
Wu, Yonghong [3 ]
Cui, Yujun [4 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[3] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
[4] Shandong Univ Sci & Technol, Dept Math, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Renormalization; Schrodinger elliptic equations; Asymptotic behavior; Geophysical fluid flows; Radial positive solutions; SIGN-CHANGING SOLUTIONS; BLOW-UP SOLUTIONS; POSITIVE SOLUTIONS; MULTIPLE SOLUTIONS; MONOTONE SOLUTIONS; KIRCHHOFF TYPE; P-LAPLACIAN; NONEXISTENCE; SYSTEM;
D O I
10.1016/j.aml.2018.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and asymptotic behavior of radial solutions for a class of nonlinear Schrodinger elliptic equations on infinite domains describing the gyre of geophysical fluid flows. The existence theorem and asymptotic properties of radial positive solutions are established by using a new renormalization technique. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:229 / 237
页数:9
相关论文
共 50 条
[41]   Existence and multiplicity of weak solutions for a singular quasilinear elliptic equation [J].
Huang, Jincheng ;
Xiu, Zonghu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (08) :1450-1460
[42]   THE EXISTENCE OF MULTIPLE SOLUTIONS OF p-LAPLACIAN ELLIPTIC EQUATION [J].
谭忠 ;
姚正安 .
ActaMathematicaScientia, 2001, (02) :203-212
[43]   The existence of multiple solutions of p-Laplacian elliptic equation [J].
Tan, Z ;
Yao, ZG .
ACTA MATHEMATICA SCIENTIA, 2001, 21 (02) :203-212
[44]   ASYMPTOTIC BEHAVIOR FOR A SCHRODINGER EQUATION WITH NONLINEAR SUBCRITICAL DISSIPATION [J].
Cazenave, Thierry ;
Han, Zheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (08) :4801-4819
[45]   EXISTENCE AND ASYMPTOTIC BEHAVIOR OF GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY LINEAR SCHRODINGER EQUATION WITH INVERSE SQUARE POTENTIAL [J].
Lin, Xiaoyan ;
He, Yubo ;
Tang, Xianhua .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (03) :1547-1565
[46]   EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR ELLIPTIC EQUATIONS [J].
Anane, Aomar ;
Chakrone, Omar ;
Chehabi, Mohammed .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
[47]   Existence and multiplicity results for a nonlinear stationary Schrodinger equation [J].
Moschetto, Danila Sandra .
ANNALES POLONICI MATHEMATICI, 2010, 99 (01) :39-43
[48]   EXISTENCE RESULTS OF A SCHRODINGER EQUATION INVOLVING A NONLINEAR OPERATOR [J].
Sun, Yan .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04) :1802-1810
[49]   Nonlinear fractional magnetic Schrodinger equation: Existence and multiplicity [J].
Ambrosio, Vincenzo ;
d'Avenia, Pietro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (05) :3336-3368
[50]   Existence and concentration of positive solutions for a Schrodinger logarithmic equation [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06)