Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study

被引:77
作者
Qureshi, Muhammad Naveed Iqbal [1 ]
Min, Beomjun [1 ]
Jo, Hang Joon [2 ]
Lee, Boreom [1 ]
机构
[1] Gwangju Inst Sci & Technol, Inst Integrated Technol, Dept Biomed Sci & Engn BMSE, Gwangju, South Korea
[2] Mayo Clin, Dept Neurol Surg, Rochester, MN USA
基金
新加坡国家研究基金会;
关键词
ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; SURFACE-BASED ANALYSIS; CORTICAL THICKNESS; FEATURE-SELECTION; CHILDREN; SEGMENTATION; METAANALYSIS; ADOLESCENTS; INHIBITION; ACTIVATION;
D O I
10.1371/journal.pone.0160697
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.
引用
收藏
页数:20
相关论文
共 57 条
[11]   Classification of ADHD children through multimodal magnetic resonance imaging [J].
Dai, Dai ;
Wang, Jieqiong ;
Hua, Jing ;
He, Huiguang .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2012, 6 :1-8
[12]   Cortical surface-based analysis - I. Segmentation and surface reconstruction [J].
Dale, AM ;
Fischl, B ;
Sereno, MI .
NEUROIMAGE, 1999, 9 (02) :179-194
[13]  
Deshpande G, 2015, IEEE T CYBERNETICS, P1
[15]   A review of the biological bases of ADHD: What have we learned from imaging studies? [J].
Durston, S .
MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS, 2003, 9 (03) :184-195
[16]   Reduced lateral prefrontal activation in adult patients with attention-deficit/hyperactivity disorder (ADHD) during a working memory task: A functional near-infrared spectroscopy (fNIRS) study [J].
Ehlis, Ann-Christine ;
Baehne, Christina G. ;
Jacob, Christian P. ;
Herrmann, Martin J. ;
Fallgatter, Andreas J. .
JOURNAL OF PSYCHIATRIC RESEARCH, 2008, 42 (13) :1060-1067
[17]   Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data [J].
Fair, Damien A. ;
Nigg, Joel T. ;
Iyer, Swathi ;
Bathula, Deepti ;
Mills, Kathryn L. ;
Dosenbach, Nico U. F. ;
Schlaggar, Bradley L. ;
Mennes, Maarten ;
Gutman, David ;
Bangaru, Saroja ;
Buitelaar, Jan K. ;
Dickstein, Daniel P. ;
Di Martino, Adriana ;
Kennedy, David N. ;
Kelly, Clare ;
Luna, Beatriz ;
Schweitzer, Julie B. ;
Velanova, Katerina ;
Wang, Yu-Feng ;
Mostofsky, Stewart ;
Castellanos, F. Xavier ;
Milham, Michael P. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2013, 6 :1-31
[18]   Cortical thinning of temporal pole and orbitofrontal cortex in medication-naive children and adolescents with ADHD [J].
Fernandez-Jaen, Alberto ;
Lopez-Martin, Sara ;
Albert, Jacobo ;
Martin Fernandez-Mayoralas, Daniel ;
Laura Fernandez-Perrone, Ana ;
Quinones Tapia, Diana ;
Calleja-Perez, Beatriz .
PSYCHIATRY RESEARCH-NEUROIMAGING, 2014, 224 (01) :8-13
[19]   Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex [J].
Fischl, B ;
Liu, A ;
Dale, AM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (01) :70-80
[20]   Cortical surface-based analysis - II: Inflation, flattening, and a surface-based coordinate system [J].
Fischl, B ;
Sereno, MI ;
Dale, AM .
NEUROIMAGE, 1999, 9 (02) :195-207