Herz-type Triebel-Lizorkin spaces, I

被引:20
作者
Xu, JS
Yang, DC [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
[2] Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China
关键词
Herz space; Triebel-Lizorkin space; maximal function; embedding; multiplier; lifting property;
D O I
10.1007/s10114-004-0424-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let s is an element of R, 0 < beta <= infinity, 0 < q, p < infinity and -n/q < alpha. In this paper the authors introduce the Herz-type Triebel-Lizorkin spaces, (KqF beta B)-F-alpha,p(R-n) and (KqF beta B)-F-alpha,p (R-n), which are the generalizations of the well-known Herz-type spaces and the inhomogeneous Triebel-Lizorkin spaces. Some properties on these Herz-type Triebel-Lizorkin spaces are also given.
引用
收藏
页码:643 / 654
页数:12
相关论文
共 18 条
[1]  
Baernstein II A., 1985, MEMOIRS AM MATH SOC, V59
[2]  
BETANCOR JJ, 2003, HERZ TYPE HARDY SPAC, V2, P301
[3]  
BEURLING A., 1964, Ann. Inst. Fourier, V14, P1, DOI [10.5802/aif.172.1287, DOI 10.5802/AIF.172.1287]
[4]   SOME NEW CLASSES OF HARDY-SPACES [J].
CHEN, YZ ;
LAU, KS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 84 (02) :255-278
[5]  
FEICHTINGER H., 1987, S MATH, VXXIX, P267
[6]  
FLETT TM, 1974, P LOND MATH SOC, V29, P538
[7]  
GARCIACUERVA J, 1994, P LOND MATH SOC, V69, P605
[8]  
GARCIACUERVA J, 1989, J LOND MATH SOC, V39, P499
[9]  
HERZ CS, 1968, J MATH MECH, V18, P283
[10]   Boundedness of some sublinear operators on Herz spaces [J].
Li, XW ;
Yang, DC .
ILLINOIS JOURNAL OF MATHEMATICS, 1996, 40 (03) :484-501